Metamath Proof Explorer


Theorem xpsfrn

Description: A short expression for the indexed cartesian product on two indices. (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypothesis xpsff1o.f F = x A , y B x 1 𝑜 y
Assertion xpsfrn ran F = k 2 𝑜 if k = A B

Proof

Step Hyp Ref Expression
1 xpsff1o.f F = x A , y B x 1 𝑜 y
2 1 xpsff1o F : A × B 1-1 onto k 2 𝑜 if k = A B
3 f1ofo F : A × B 1-1 onto k 2 𝑜 if k = A B F : A × B onto k 2 𝑜 if k = A B
4 forn F : A × B onto k 2 𝑜 if k = A B ran F = k 2 𝑜 if k = A B
5 2 3 4 mp2b ran F = k 2 𝑜 if k = A B