Metamath Proof Explorer


Theorem xpsfrnel

Description: Elementhood in the target space of the function F appearing in xpsval . (Contributed by Mario Carneiro, 14-Aug-2015)

Ref Expression
Assertion xpsfrnel G k 2 𝑜 if k = A B G Fn 2 𝑜 G A G 1 𝑜 B

Proof

Step Hyp Ref Expression
1 elixp2 G k 2 𝑜 if k = A B G V G Fn 2 𝑜 k 2 𝑜 G k if k = A B
2 3ancoma G V G Fn 2 𝑜 k 2 𝑜 G k if k = A B G Fn 2 𝑜 G V k 2 𝑜 G k if k = A B
3 2onn 2 𝑜 ω
4 nnfi 2 𝑜 ω 2 𝑜 Fin
5 3 4 ax-mp 2 𝑜 Fin
6 fnfi G Fn 2 𝑜 2 𝑜 Fin G Fin
7 5 6 mpan2 G Fn 2 𝑜 G Fin
8 7 elexd G Fn 2 𝑜 G V
9 8 biantrurd G Fn 2 𝑜 k 2 𝑜 G k if k = A B G V k 2 𝑜 G k if k = A B
10 df2o3 2 𝑜 = 1 𝑜
11 10 raleqi k 2 𝑜 G k if k = A B k 1 𝑜 G k if k = A B
12 0ex V
13 1oex 1 𝑜 V
14 fveq2 k = G k = G
15 iftrue k = if k = A B = A
16 14 15 eleq12d k = G k if k = A B G A
17 fveq2 k = 1 𝑜 G k = G 1 𝑜
18 1n0 1 𝑜
19 neeq1 k = 1 𝑜 k 1 𝑜
20 18 19 mpbiri k = 1 𝑜 k
21 ifnefalse k if k = A B = B
22 20 21 syl k = 1 𝑜 if k = A B = B
23 17 22 eleq12d k = 1 𝑜 G k if k = A B G 1 𝑜 B
24 12 13 16 23 ralpr k 1 𝑜 G k if k = A B G A G 1 𝑜 B
25 11 24 bitri k 2 𝑜 G k if k = A B G A G 1 𝑜 B
26 9 25 bitr3di G Fn 2 𝑜 G V k 2 𝑜 G k if k = A B G A G 1 𝑜 B
27 26 pm5.32i G Fn 2 𝑜 G V k 2 𝑜 G k if k = A B G Fn 2 𝑜 G A G 1 𝑜 B
28 3anass G Fn 2 𝑜 G V k 2 𝑜 G k if k = A B G Fn 2 𝑜 G V k 2 𝑜 G k if k = A B
29 3anass G Fn 2 𝑜 G A G 1 𝑜 B G Fn 2 𝑜 G A G 1 𝑜 B
30 27 28 29 3bitr4i G Fn 2 𝑜 G V k 2 𝑜 G k if k = A B G Fn 2 𝑜 G A G 1 𝑜 B
31 2 30 bitri G V G Fn 2 𝑜 k 2 𝑜 G k if k = A B G Fn 2 𝑜 G A G 1 𝑜 B
32 1 31 bitri G k 2 𝑜 if k = A B G Fn 2 𝑜 G A G 1 𝑜 B