Metamath Proof Explorer


Theorem xpsfval

Description: The value of the function appearing in xpsval . (Contributed by Mario Carneiro, 15-Aug-2015)

Ref Expression
Hypothesis xpsff1o.f F = x A , y B x 1 𝑜 y
Assertion xpsfval X A Y B X F Y = X 1 𝑜 Y

Proof

Step Hyp Ref Expression
1 xpsff1o.f F = x A , y B x 1 𝑜 y
2 simpl x = X y = Y x = X
3 2 opeq2d x = X y = Y x = X
4 simpr x = X y = Y y = Y
5 4 opeq2d x = X y = Y 1 𝑜 y = 1 𝑜 Y
6 3 5 preq12d x = X y = Y x 1 𝑜 y = X 1 𝑜 Y
7 prex X 1 𝑜 Y V
8 6 1 7 ovmpoa X A Y B X F Y = X 1 𝑜 Y