Metamath Proof Explorer


Theorem xpsgrp

Description: The binary product of groups is a group. (Contributed by Mario Carneiro, 20-Aug-2015)

Ref Expression
Hypothesis xpsgrp.t T = R × 𝑠 S
Assertion xpsgrp R Grp S Grp T Grp

Proof

Step Hyp Ref Expression
1 xpsgrp.t T = R × 𝑠 S
2 eqid Base R = Base R
3 eqid Base S = Base S
4 simpl R Grp S Grp R Grp
5 simpr R Grp S Grp S Grp
6 eqid x Base R , y Base S x 1 𝑜 y = x Base R , y Base S x 1 𝑜 y
7 eqid Scalar R = Scalar R
8 eqid Scalar R 𝑠 R 1 𝑜 S = Scalar R 𝑠 R 1 𝑜 S
9 1 2 3 4 5 6 7 8 xpsval R Grp S Grp T = x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S
10 6 xpsff1o2 x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y
11 1 2 3 4 5 6 7 8 xpsrnbas R Grp S Grp ran x Base R , y Base S x 1 𝑜 y = Base Scalar R 𝑠 R 1 𝑜 S
12 11 f1oeq3d R Grp S Grp x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto Base Scalar R 𝑠 R 1 𝑜 S
13 10 12 mpbii R Grp S Grp x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto Base Scalar R 𝑠 R 1 𝑜 S
14 f1ocnv x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto Base Scalar R 𝑠 R 1 𝑜 S x Base R , y Base S x 1 𝑜 y -1 : Base Scalar R 𝑠 R 1 𝑜 S 1-1 onto Base R × Base S
15 f1of1 x Base R , y Base S x 1 𝑜 y -1 : Base Scalar R 𝑠 R 1 𝑜 S 1-1 onto Base R × Base S x Base R , y Base S x 1 𝑜 y -1 : Base Scalar R 𝑠 R 1 𝑜 S 1-1 Base R × Base S
16 13 14 15 3syl R Grp S Grp x Base R , y Base S x 1 𝑜 y -1 : Base Scalar R 𝑠 R 1 𝑜 S 1-1 Base R × Base S
17 2on 2 𝑜 On
18 17 a1i R Grp S Grp 2 𝑜 On
19 fvexd R Grp S Grp Scalar R V
20 xpscf R 1 𝑜 S : 2 𝑜 Grp R Grp S Grp
21 20 biimpri R Grp S Grp R 1 𝑜 S : 2 𝑜 Grp
22 8 18 19 21 prdsgrpd R Grp S Grp Scalar R 𝑠 R 1 𝑜 S Grp
23 eqid x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S = x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S
24 eqid Base Scalar R 𝑠 R 1 𝑜 S = Base Scalar R 𝑠 R 1 𝑜 S
25 23 24 imasgrpf1 x Base R , y Base S x 1 𝑜 y -1 : Base Scalar R 𝑠 R 1 𝑜 S 1-1 Base R × Base S Scalar R 𝑠 R 1 𝑜 S Grp x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S Grp
26 16 22 25 syl2anc R Grp S Grp x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S Grp
27 9 26 eqeltrd R Grp S Grp T Grp