Metamath Proof Explorer


Theorem xpsgrpsub

Description: Value of the subtraction operation in a binary structure product of groups. (Contributed by AV, 24-Mar-2025)

Ref Expression
Hypotheses xpsinv.t T = R × 𝑠 S
xpsinv.x X = Base R
xpsinv.y Y = Base S
xpsinv.r φ R Grp
xpsinv.s φ S Grp
xpsinv.a φ A X
xpsinv.b φ B Y
xpsgrpsub.c φ C X
xpsgrpsub.d φ D Y
xpsgrpsub.m · ˙ = - R
xpsgrpsub.n × ˙ = - S
xpsgrpsub.o - ˙ = - T
Assertion xpsgrpsub φ A B - ˙ C D = A · ˙ C B × ˙ D

Proof

Step Hyp Ref Expression
1 xpsinv.t T = R × 𝑠 S
2 xpsinv.x X = Base R
3 xpsinv.y Y = Base S
4 xpsinv.r φ R Grp
5 xpsinv.s φ S Grp
6 xpsinv.a φ A X
7 xpsinv.b φ B Y
8 xpsgrpsub.c φ C X
9 xpsgrpsub.d φ D Y
10 xpsgrpsub.m · ˙ = - R
11 xpsgrpsub.n × ˙ = - S
12 xpsgrpsub.o - ˙ = - T
13 2 10 grpsubcl R Grp A X C X A · ˙ C X
14 4 6 8 13 syl3anc φ A · ˙ C X
15 3 11 grpsubcl S Grp B Y D Y B × ˙ D Y
16 5 7 9 15 syl3anc φ B × ˙ D Y
17 eqid + R = + R
18 2 17 4 14 8 grpcld φ A · ˙ C + R C X
19 eqid + S = + S
20 3 19 5 16 9 grpcld φ B × ˙ D + S D Y
21 eqid + T = + T
22 1 2 3 4 5 14 16 8 9 18 20 17 19 21 xpsadd φ A · ˙ C B × ˙ D + T C D = A · ˙ C + R C B × ˙ D + S D
23 2 17 10 grpnpcan R Grp A X C X A · ˙ C + R C = A
24 4 6 8 23 syl3anc φ A · ˙ C + R C = A
25 3 19 11 grpnpcan S Grp B Y D Y B × ˙ D + S D = B
26 5 7 9 25 syl3anc φ B × ˙ D + S D = B
27 24 26 opeq12d φ A · ˙ C + R C B × ˙ D + S D = A B
28 22 27 eqtrd φ A · ˙ C B × ˙ D + T C D = A B
29 1 xpsgrp R Grp S Grp T Grp
30 4 5 29 syl2anc φ T Grp
31 6 7 opelxpd φ A B X × Y
32 1 2 3 4 5 xpsbas φ X × Y = Base T
33 31 32 eleqtrd φ A B Base T
34 8 9 opelxpd φ C D X × Y
35 34 32 eleqtrd φ C D Base T
36 14 16 opelxpd φ A · ˙ C B × ˙ D X × Y
37 36 32 eleqtrd φ A · ˙ C B × ˙ D Base T
38 eqid Base T = Base T
39 38 21 12 grpsubadd T Grp A B Base T C D Base T A · ˙ C B × ˙ D Base T A B - ˙ C D = A · ˙ C B × ˙ D A · ˙ C B × ˙ D + T C D = A B
40 30 33 35 37 39 syl13anc φ A B - ˙ C D = A · ˙ C B × ˙ D A · ˙ C B × ˙ D + T C D = A B
41 28 40 mpbird φ A B - ˙ C D = A · ˙ C B × ˙ D