Metamath Proof Explorer


Theorem xpsinv

Description: Value of the negation operation in a binary structure product. (Contributed by AV, 18-Mar-2025)

Ref Expression
Hypotheses xpsinv.t T = R × 𝑠 S
xpsinv.x X = Base R
xpsinv.y Y = Base S
xpsinv.r φ R Grp
xpsinv.s φ S Grp
xpsinv.a φ A X
xpsinv.b φ B Y
xpsinv.m M = inv g R
xpsinv.n N = inv g S
xpsinv.i I = inv g T
Assertion xpsinv φ I A B = M A N B

Proof

Step Hyp Ref Expression
1 xpsinv.t T = R × 𝑠 S
2 xpsinv.x X = Base R
3 xpsinv.y Y = Base S
4 xpsinv.r φ R Grp
5 xpsinv.s φ S Grp
6 xpsinv.a φ A X
7 xpsinv.b φ B Y
8 xpsinv.m M = inv g R
9 xpsinv.n N = inv g S
10 xpsinv.i I = inv g T
11 eqid + R = + R
12 eqid 0 R = 0 R
13 2 11 12 8 4 6 grplinvd φ M A + R A = 0 R
14 eqid + S = + S
15 eqid 0 S = 0 S
16 3 14 15 9 5 7 grplinvd φ N B + S B = 0 S
17 13 16 opeq12d φ M A + R A N B + S B = 0 R 0 S
18 2 8 4 6 grpinvcld φ M A X
19 3 9 5 7 grpinvcld φ N B Y
20 2 11 4 18 6 grpcld φ M A + R A X
21 3 14 5 19 7 grpcld φ N B + S B Y
22 eqid + T = + T
23 1 2 3 4 5 18 19 6 7 20 21 11 14 22 xpsadd φ M A N B + T A B = M A + R A N B + S B
24 4 grpmndd φ R Mnd
25 5 grpmndd φ S Mnd
26 1 xpsmnd0 R Mnd S Mnd 0 T = 0 R 0 S
27 24 25 26 syl2anc φ 0 T = 0 R 0 S
28 17 23 27 3eqtr4d φ M A N B + T A B = 0 T
29 1 xpsgrp R Grp S Grp T Grp
30 4 5 29 syl2anc φ T Grp
31 6 7 opelxpd φ A B X × Y
32 1 2 3 4 5 xpsbas φ X × Y = Base T
33 31 32 eleqtrd φ A B Base T
34 18 19 opelxpd φ M A N B X × Y
35 34 32 eleqtrd φ M A N B Base T
36 eqid Base T = Base T
37 eqid 0 T = 0 T
38 36 22 37 10 grpinvid2 T Grp A B Base T M A N B Base T I A B = M A N B M A N B + T A B = 0 T
39 30 33 35 38 syl3anc φ I A B = M A N B M A N B + T A B = 0 T
40 28 39 mpbird φ I A B = M A N B