Metamath Proof Explorer


Theorem xpsmnd0

Description: The identity element of a binary product of monoids. (Contributed by AV, 25-Feb-2025)

Ref Expression
Hypothesis xpsmnd0.t T = R × 𝑠 S
Assertion xpsmnd0 R Mnd S Mnd 0 T = 0 R 0 S

Proof

Step Hyp Ref Expression
1 xpsmnd0.t T = R × 𝑠 S
2 eqid Base T = Base T
3 eqid 0 T = 0 T
4 eqid + T = + T
5 eqid Base R = Base R
6 eqid 0 R = 0 R
7 5 6 mndidcl R Mnd 0 R Base R
8 7 adantr R Mnd S Mnd 0 R Base R
9 eqid Base S = Base S
10 eqid 0 S = 0 S
11 9 10 mndidcl S Mnd 0 S Base S
12 11 adantl R Mnd S Mnd 0 S Base S
13 8 12 opelxpd R Mnd S Mnd 0 R 0 S Base R × Base S
14 simpl R Mnd S Mnd R Mnd
15 simpr R Mnd S Mnd S Mnd
16 1 5 9 14 15 xpsbas R Mnd S Mnd Base R × Base S = Base T
17 13 16 eleqtrd R Mnd S Mnd 0 R 0 S Base T
18 16 eleq2d R Mnd S Mnd x Base R × Base S x Base T
19 elxp2 x Base R × Base S a Base R b Base S x = a b
20 14 adantr R Mnd S Mnd a Base R b Base S R Mnd
21 15 adantr R Mnd S Mnd a Base R b Base S S Mnd
22 8 adantr R Mnd S Mnd a Base R b Base S 0 R Base R
23 12 adantr R Mnd S Mnd a Base R b Base S 0 S Base S
24 simpl a Base R b Base S a Base R
25 24 adantl R Mnd S Mnd a Base R b Base S a Base R
26 simpr a Base R b Base S b Base S
27 26 adantl R Mnd S Mnd a Base R b Base S b Base S
28 eqid + R = + R
29 5 28 mndcl R Mnd 0 R Base R a Base R 0 R + R a Base R
30 20 22 25 29 syl3anc R Mnd S Mnd a Base R b Base S 0 R + R a Base R
31 eqid + S = + S
32 9 31 mndcl S Mnd 0 S Base S b Base S 0 S + S b Base S
33 21 23 27 32 syl3anc R Mnd S Mnd a Base R b Base S 0 S + S b Base S
34 1 5 9 20 21 22 23 25 27 30 33 28 31 4 xpsadd R Mnd S Mnd a Base R b Base S 0 R 0 S + T a b = 0 R + R a 0 S + S b
35 5 28 6 mndlid R Mnd a Base R 0 R + R a = a
36 14 24 35 syl2an R Mnd S Mnd a Base R b Base S 0 R + R a = a
37 9 31 10 mndlid S Mnd b Base S 0 S + S b = b
38 15 26 37 syl2an R Mnd S Mnd a Base R b Base S 0 S + S b = b
39 36 38 opeq12d R Mnd S Mnd a Base R b Base S 0 R + R a 0 S + S b = a b
40 34 39 eqtrd R Mnd S Mnd a Base R b Base S 0 R 0 S + T a b = a b
41 oveq2 x = a b 0 R 0 S + T x = 0 R 0 S + T a b
42 id x = a b x = a b
43 41 42 eqeq12d x = a b 0 R 0 S + T x = x 0 R 0 S + T a b = a b
44 40 43 syl5ibrcom R Mnd S Mnd a Base R b Base S x = a b 0 R 0 S + T x = x
45 44 rexlimdvva R Mnd S Mnd a Base R b Base S x = a b 0 R 0 S + T x = x
46 19 45 biimtrid R Mnd S Mnd x Base R × Base S 0 R 0 S + T x = x
47 18 46 sylbird R Mnd S Mnd x Base T 0 R 0 S + T x = x
48 47 imp R Mnd S Mnd x Base T 0 R 0 S + T x = x
49 5 28 mndcl R Mnd a Base R 0 R Base R a + R 0 R Base R
50 20 25 22 49 syl3anc R Mnd S Mnd a Base R b Base S a + R 0 R Base R
51 9 31 mndcl S Mnd b Base S 0 S Base S b + S 0 S Base S
52 21 27 23 51 syl3anc R Mnd S Mnd a Base R b Base S b + S 0 S Base S
53 1 5 9 20 21 25 27 22 23 50 52 28 31 4 xpsadd R Mnd S Mnd a Base R b Base S a b + T 0 R 0 S = a + R 0 R b + S 0 S
54 5 28 6 mndrid R Mnd a Base R a + R 0 R = a
55 14 24 54 syl2an R Mnd S Mnd a Base R b Base S a + R 0 R = a
56 9 31 10 mndrid S Mnd b Base S b + S 0 S = b
57 15 26 56 syl2an R Mnd S Mnd a Base R b Base S b + S 0 S = b
58 55 57 opeq12d R Mnd S Mnd a Base R b Base S a + R 0 R b + S 0 S = a b
59 53 58 eqtrd R Mnd S Mnd a Base R b Base S a b + T 0 R 0 S = a b
60 oveq1 x = a b x + T 0 R 0 S = a b + T 0 R 0 S
61 60 42 eqeq12d x = a b x + T 0 R 0 S = x a b + T 0 R 0 S = a b
62 59 61 syl5ibrcom R Mnd S Mnd a Base R b Base S x = a b x + T 0 R 0 S = x
63 62 rexlimdvva R Mnd S Mnd a Base R b Base S x = a b x + T 0 R 0 S = x
64 19 63 biimtrid R Mnd S Mnd x Base R × Base S x + T 0 R 0 S = x
65 18 64 sylbird R Mnd S Mnd x Base T x + T 0 R 0 S = x
66 65 imp R Mnd S Mnd x Base T x + T 0 R 0 S = x
67 2 3 4 17 48 66 ismgmid2 R Mnd S Mnd 0 R 0 S = 0 T
68 67 eqcomd R Mnd S Mnd 0 T = 0 R 0 S