Step |
Hyp |
Ref |
Expression |
1 |
|
xpsmnd0.t |
|
2 |
|
eqid |
|
3 |
|
eqid |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
5 6
|
mndidcl |
|
8 |
7
|
adantr |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
9 10
|
mndidcl |
|
12 |
11
|
adantl |
|
13 |
8 12
|
opelxpd |
|
14 |
|
simpl |
|
15 |
|
simpr |
|
16 |
1 5 9 14 15
|
xpsbas |
|
17 |
13 16
|
eleqtrd |
|
18 |
16
|
eleq2d |
|
19 |
|
elxp2 |
|
20 |
14
|
adantr |
|
21 |
15
|
adantr |
|
22 |
8
|
adantr |
|
23 |
12
|
adantr |
|
24 |
|
simpl |
|
25 |
24
|
adantl |
|
26 |
|
simpr |
|
27 |
26
|
adantl |
|
28 |
|
eqid |
|
29 |
5 28
|
mndcl |
|
30 |
20 22 25 29
|
syl3anc |
|
31 |
|
eqid |
|
32 |
9 31
|
mndcl |
|
33 |
21 23 27 32
|
syl3anc |
|
34 |
1 5 9 20 21 22 23 25 27 30 33 28 31 4
|
xpsadd |
|
35 |
5 28 6
|
mndlid |
|
36 |
14 24 35
|
syl2an |
|
37 |
9 31 10
|
mndlid |
|
38 |
15 26 37
|
syl2an |
|
39 |
36 38
|
opeq12d |
|
40 |
34 39
|
eqtrd |
|
41 |
|
oveq2 |
|
42 |
|
id |
|
43 |
41 42
|
eqeq12d |
|
44 |
40 43
|
syl5ibrcom |
|
45 |
44
|
rexlimdvva |
|
46 |
19 45
|
biimtrid |
|
47 |
18 46
|
sylbird |
|
48 |
47
|
imp |
|
49 |
5 28
|
mndcl |
|
50 |
20 25 22 49
|
syl3anc |
|
51 |
9 31
|
mndcl |
|
52 |
21 27 23 51
|
syl3anc |
|
53 |
1 5 9 20 21 25 27 22 23 50 52 28 31 4
|
xpsadd |
|
54 |
5 28 6
|
mndrid |
|
55 |
14 24 54
|
syl2an |
|
56 |
9 31 10
|
mndrid |
|
57 |
15 26 56
|
syl2an |
|
58 |
55 57
|
opeq12d |
|
59 |
53 58
|
eqtrd |
|
60 |
|
oveq1 |
|
61 |
60 42
|
eqeq12d |
|
62 |
59 61
|
syl5ibrcom |
|
63 |
62
|
rexlimdvva |
|
64 |
19 63
|
biimtrid |
|
65 |
18 64
|
sylbird |
|
66 |
65
|
imp |
|
67 |
2 3 4 17 48 66
|
ismgmid2 |
|
68 |
67
|
eqcomd |
|