Metamath Proof Explorer


Theorem xpsms

Description: A binary product of metric spaces is a metric space. (Contributed by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypothesis xpsms.t T = R × 𝑠 S
Assertion xpsms R MetSp S MetSp T MetSp

Proof

Step Hyp Ref Expression
1 xpsms.t T = R × 𝑠 S
2 eqid Base R = Base R
3 eqid Base S = Base S
4 simpl R MetSp S MetSp R MetSp
5 simpr R MetSp S MetSp S MetSp
6 eqid x Base R , y Base S x 1 𝑜 y = x Base R , y Base S x 1 𝑜 y
7 eqid Scalar R = Scalar R
8 eqid Scalar R 𝑠 R 1 𝑜 S = Scalar R 𝑠 R 1 𝑜 S
9 1 2 3 4 5 6 7 8 xpsval R MetSp S MetSp T = x Base R , y Base S x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S
10 1 2 3 4 5 6 7 8 xpsrnbas R MetSp S MetSp ran x Base R , y Base S x 1 𝑜 y = Base Scalar R 𝑠 R 1 𝑜 S
11 6 xpsff1o2 x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y
12 f1ocnv x Base R , y Base S x 1 𝑜 y : Base R × Base S 1-1 onto ran x Base R , y Base S x 1 𝑜 y x Base R , y Base S x 1 𝑜 y -1 : ran x Base R , y Base S x 1 𝑜 y 1-1 onto Base R × Base S
13 11 12 mp1i R MetSp S MetSp x Base R , y Base S x 1 𝑜 y -1 : ran x Base R , y Base S x 1 𝑜 y 1-1 onto Base R × Base S
14 fvexd R MetSp S MetSp Scalar R V
15 2onn 2 𝑜 ω
16 nnfi 2 𝑜 ω 2 𝑜 Fin
17 15 16 mp1i R MetSp S MetSp 2 𝑜 Fin
18 xpscf R 1 𝑜 S : 2 𝑜 MetSp R MetSp S MetSp
19 18 biimpri R MetSp S MetSp R 1 𝑜 S : 2 𝑜 MetSp
20 8 prdsms Scalar R V 2 𝑜 Fin R 1 𝑜 S : 2 𝑜 MetSp Scalar R 𝑠 R 1 𝑜 S MetSp
21 14 17 19 20 syl3anc R MetSp S MetSp Scalar R 𝑠 R 1 𝑜 S MetSp
22 9 10 13 21 imasf1oms R MetSp S MetSp T MetSp