Metamath Proof Explorer


Theorem xpsneng

Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of Mendelson p. 254. (Contributed by NM, 22-Oct-2004)

Ref Expression
Assertion xpsneng A V B W A × B A

Proof

Step Hyp Ref Expression
1 xpeq1 x = A x × y = A × y
2 id x = A x = A
3 1 2 breq12d x = A x × y x A × y A
4 sneq y = B y = B
5 4 xpeq2d y = B A × y = A × B
6 5 breq1d y = B A × y A A × B A
7 vex x V
8 vex y V
9 7 8 xpsnen x × y x
10 3 6 9 vtocl2g A V B W A × B A