Metamath Proof Explorer


Theorem xpsring1d

Description: The multiplicative identity element of a binary product of rings. (Contributed by AV, 16-Mar-2025)

Ref Expression
Hypotheses xpsringd.y Y = S × 𝑠 R
xpsringd.s φ S Ring
xpsringd.r φ R Ring
Assertion xpsring1d φ 1 Y = 1 S 1 R

Proof

Step Hyp Ref Expression
1 xpsringd.y Y = S × 𝑠 R
2 xpsringd.s φ S Ring
3 xpsringd.r φ R Ring
4 eqid mulGrp Y = mulGrp Y
5 eqid Base Y = Base Y
6 4 5 mgpbas Base Y = Base mulGrp Y
7 eqid 1 Y = 1 Y
8 4 7 ringidval 1 Y = 0 mulGrp Y
9 eqid Y = Y
10 4 9 mgpplusg Y = + mulGrp Y
11 eqid Base S = Base S
12 eqid 1 S = 1 S
13 11 12 ringidcl S Ring 1 S Base S
14 2 13 syl φ 1 S Base S
15 eqid Base R = Base R
16 eqid 1 R = 1 R
17 15 16 ringidcl R Ring 1 R Base R
18 3 17 syl φ 1 R Base R
19 14 18 opelxpd φ 1 S 1 R Base S × Base R
20 1 11 15 2 3 xpsbas φ Base S × Base R = Base Y
21 19 20 eleqtrd φ 1 S 1 R Base Y
22 20 eleq2d φ x Base S × Base R x Base Y
23 elxp2 x Base S × Base R a Base S b Base R x = a b
24 2 adantr φ a Base S b Base R S Ring
25 3 adantr φ a Base S b Base R R Ring
26 14 adantr φ a Base S b Base R 1 S Base S
27 18 adantr φ a Base S b Base R 1 R Base R
28 simprl φ a Base S b Base R a Base S
29 simprr φ a Base S b Base R b Base R
30 eqid S = S
31 11 30 24 26 28 ringcld φ a Base S b Base R 1 S S a Base S
32 eqid R = R
33 15 32 25 27 29 ringcld φ a Base S b Base R 1 R R b Base R
34 1 11 15 24 25 26 27 28 29 31 33 30 32 9 xpsmul φ a Base S b Base R 1 S 1 R Y a b = 1 S S a 1 R R b
35 simpl a Base S b Base R a Base S
36 11 30 12 ringlidm S Ring a Base S 1 S S a = a
37 2 35 36 syl2an φ a Base S b Base R 1 S S a = a
38 simpr a Base S b Base R b Base R
39 15 32 16 ringlidm R Ring b Base R 1 R R b = b
40 3 38 39 syl2an φ a Base S b Base R 1 R R b = b
41 37 40 opeq12d φ a Base S b Base R 1 S S a 1 R R b = a b
42 34 41 eqtrd φ a Base S b Base R 1 S 1 R Y a b = a b
43 oveq2 x = a b 1 S 1 R Y x = 1 S 1 R Y a b
44 id x = a b x = a b
45 43 44 eqeq12d x = a b 1 S 1 R Y x = x 1 S 1 R Y a b = a b
46 42 45 syl5ibrcom φ a Base S b Base R x = a b 1 S 1 R Y x = x
47 46 rexlimdvva φ a Base S b Base R x = a b 1 S 1 R Y x = x
48 23 47 biimtrid φ x Base S × Base R 1 S 1 R Y x = x
49 22 48 sylbird φ x Base Y 1 S 1 R Y x = x
50 49 imp φ x Base Y 1 S 1 R Y x = x
51 11 30 24 28 26 ringcld φ a Base S b Base R a S 1 S Base S
52 15 32 25 29 27 ringcld φ a Base S b Base R b R 1 R Base R
53 1 11 15 24 25 28 29 26 27 51 52 30 32 9 xpsmul φ a Base S b Base R a b Y 1 S 1 R = a S 1 S b R 1 R
54 11 30 12 ringridm S Ring a Base S a S 1 S = a
55 2 35 54 syl2an φ a Base S b Base R a S 1 S = a
56 15 32 16 ringridm R Ring b Base R b R 1 R = b
57 3 38 56 syl2an φ a Base S b Base R b R 1 R = b
58 55 57 opeq12d φ a Base S b Base R a S 1 S b R 1 R = a b
59 53 58 eqtrd φ a Base S b Base R a b Y 1 S 1 R = a b
60 oveq1 x = a b x Y 1 S 1 R = a b Y 1 S 1 R
61 60 44 eqeq12d x = a b x Y 1 S 1 R = x a b Y 1 S 1 R = a b
62 59 61 syl5ibrcom φ a Base S b Base R x = a b x Y 1 S 1 R = x
63 62 rexlimdvva φ a Base S b Base R x = a b x Y 1 S 1 R = x
64 23 63 biimtrid φ x Base S × Base R x Y 1 S 1 R = x
65 22 64 sylbird φ x Base Y x Y 1 S 1 R = x
66 65 imp φ x Base Y x Y 1 S 1 R = x
67 6 8 10 21 50 66 ismgmid2 φ 1 S 1 R = 1 Y
68 67 eqcomd φ 1 Y = 1 S 1 R