Metamath Proof Explorer


Theorem xpsrngd

Description: A product of two non-unital rings is a non-unital ring ( xpsmnd analog). (Contributed by AV, 22-Feb-2025)

Ref Expression
Hypotheses xpsrngd.y Y = S × 𝑠 R
xpsrngd.s φ S Rng
xpsrngd.r φ R Rng
Assertion xpsrngd φ Y Rng

Proof

Step Hyp Ref Expression
1 xpsrngd.y Y = S × 𝑠 R
2 xpsrngd.s φ S Rng
3 xpsrngd.r φ R Rng
4 eqid Base S = Base S
5 eqid Base R = Base R
6 eqid x Base S , y Base R x 1 𝑜 y = x Base S , y Base R x 1 𝑜 y
7 eqid Scalar S = Scalar S
8 eqid Scalar S 𝑠 S 1 𝑜 R = Scalar S 𝑠 S 1 𝑜 R
9 1 4 5 2 3 6 7 8 xpsval φ Y = x Base S , y Base R x 1 𝑜 y -1 𝑠 Scalar S 𝑠 S 1 𝑜 R
10 6 xpsff1o2 x Base S , y Base R x 1 𝑜 y : Base S × Base R 1-1 onto ran x Base S , y Base R x 1 𝑜 y
11 1 4 5 2 3 6 7 8 xpsrnbas φ ran x Base S , y Base R x 1 𝑜 y = Base Scalar S 𝑠 S 1 𝑜 R
12 11 f1oeq3d φ x Base S , y Base R x 1 𝑜 y : Base S × Base R 1-1 onto ran x Base S , y Base R x 1 𝑜 y x Base S , y Base R x 1 𝑜 y : Base S × Base R 1-1 onto Base Scalar S 𝑠 S 1 𝑜 R
13 10 12 mpbii φ x Base S , y Base R x 1 𝑜 y : Base S × Base R 1-1 onto Base Scalar S 𝑠 S 1 𝑜 R
14 f1ocnv x Base S , y Base R x 1 𝑜 y : Base S × Base R 1-1 onto Base Scalar S 𝑠 S 1 𝑜 R x Base S , y Base R x 1 𝑜 y -1 : Base Scalar S 𝑠 S 1 𝑜 R 1-1 onto Base S × Base R
15 f1of1 x Base S , y Base R x 1 𝑜 y -1 : Base Scalar S 𝑠 S 1 𝑜 R 1-1 onto Base S × Base R x Base S , y Base R x 1 𝑜 y -1 : Base Scalar S 𝑠 S 1 𝑜 R 1-1 Base S × Base R
16 13 14 15 3syl φ x Base S , y Base R x 1 𝑜 y -1 : Base Scalar S 𝑠 S 1 𝑜 R 1-1 Base S × Base R
17 2on 2 𝑜 On
18 17 a1i φ 2 𝑜 On
19 fvexd φ Scalar S V
20 xpscf S 1 𝑜 R : 2 𝑜 Rng S Rng R Rng
21 2 3 20 sylanbrc φ S 1 𝑜 R : 2 𝑜 Rng
22 8 18 19 21 prdsrngd φ Scalar S 𝑠 S 1 𝑜 R Rng
23 eqid x Base S , y Base R x 1 𝑜 y -1 𝑠 Scalar S 𝑠 S 1 𝑜 R = x Base S , y Base R x 1 𝑜 y -1 𝑠 Scalar S 𝑠 S 1 𝑜 R
24 eqid Base Scalar S 𝑠 S 1 𝑜 R = Base Scalar S 𝑠 S 1 𝑜 R
25 23 24 imasrngf1 x Base S , y Base R x 1 𝑜 y -1 : Base Scalar S 𝑠 S 1 𝑜 R 1-1 Base S × Base R Scalar S 𝑠 S 1 𝑜 R Rng x Base S , y Base R x 1 𝑜 y -1 𝑠 Scalar S 𝑠 S 1 𝑜 R Rng
26 16 22 25 syl2anc φ x Base S , y Base R x 1 𝑜 y -1 𝑠 Scalar S 𝑠 S 1 𝑜 R Rng
27 9 26 eqeltrd φ Y Rng