Metamath Proof Explorer


Theorem xpssres

Description: Restriction of a constant function (or other Cartesian product). (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion xpssres C A A × B C = C × B

Proof

Step Hyp Ref Expression
1 df-res A × B C = A × B C × V
2 inxp A × B C × V = A C × B V
3 inv1 B V = B
4 3 xpeq2i A C × B V = A C × B
5 1 2 4 3eqtri A × B C = A C × B
6 sseqin2 C A A C = C
7 6 biimpi C A A C = C
8 7 xpeq1d C A A C × B = C × B
9 5 8 eqtrid C A A × B C = C × B