Metamath Proof Explorer


Theorem xpstopn

Description: The topology on a binary product of topological spaces, as we have defined it (transferring the indexed product topology on functions on { (/) , 1o } to ( X X. Y ) by the canonical bijection), coincides with the usual topological product (generated by a base of rectangles). (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses xpstps.t T = R × 𝑠 S
xpstopn.j J = TopOpen R
xpstopn.k K = TopOpen S
xpstopn.o O = TopOpen T
Assertion xpstopn R TopSp S TopSp O = J × t K

Proof

Step Hyp Ref Expression
1 xpstps.t T = R × 𝑠 S
2 xpstopn.j J = TopOpen R
3 xpstopn.k K = TopOpen S
4 xpstopn.o O = TopOpen T
5 eqid Base R = Base R
6 eqid Base S = Base S
7 eqid x Base R , y Base S x 1 𝑜 y = x Base R , y Base S x 1 𝑜 y
8 1 2 3 4 5 6 7 xpstopnlem2 R TopSp S TopSp O = J × t K