Step |
Hyp |
Ref |
Expression |
1 |
|
xpstps.t |
|
2 |
|
xpstopn.j |
|
3 |
|
xpstopn.k |
|
4 |
|
xpstopn.o |
|
5 |
|
xpstopnlem.x |
|
6 |
|
xpstopnlem.y |
|
7 |
|
xpstopnlem.f |
|
8 |
|
eqid |
|
9 |
|
fvexd |
|
10 |
|
2on |
|
11 |
10
|
a1i |
|
12 |
|
fnpr2o |
|
13 |
|
eqid |
|
14 |
8 9 11 12 13
|
prdstopn |
|
15 |
|
topnfn |
|
16 |
|
dffn2 |
|
17 |
12 16
|
sylib |
|
18 |
|
fnfco |
|
19 |
15 17 18
|
sylancr |
|
20 |
|
xpsfeq |
|
21 |
19 20
|
syl |
|
22 |
|
0ex |
|
23 |
22
|
prid1 |
|
24 |
|
df2o3 |
|
25 |
23 24
|
eleqtrri |
|
26 |
|
fvco2 |
|
27 |
12 25 26
|
sylancl |
|
28 |
|
fvpr0o |
|
29 |
28
|
adantr |
|
30 |
29
|
fveq2d |
|
31 |
30 2
|
eqtr4di |
|
32 |
27 31
|
eqtrd |
|
33 |
32
|
opeq2d |
|
34 |
|
1oex |
|
35 |
34
|
prid2 |
|
36 |
35 24
|
eleqtrri |
|
37 |
|
fvco2 |
|
38 |
12 36 37
|
sylancl |
|
39 |
|
fvpr1o |
|
40 |
39
|
adantl |
|
41 |
40
|
fveq2d |
|
42 |
41 3
|
eqtr4di |
|
43 |
38 42
|
eqtrd |
|
44 |
43
|
opeq2d |
|
45 |
33 44
|
preq12d |
|
46 |
21 45
|
eqtr3d |
|
47 |
46
|
fveq2d |
|
48 |
14 47
|
eqtrd |
|
49 |
48
|
oveq1d |
|
50 |
|
simpl |
|
51 |
|
simpr |
|
52 |
|
eqid |
|
53 |
1 5 6 50 51 7 52 8
|
xpsval |
|
54 |
1 5 6 50 51 7 52 8
|
xpsrnbas |
|
55 |
7
|
xpsff1o2 |
|
56 |
|
f1ocnv |
|
57 |
55 56
|
mp1i |
|
58 |
|
f1ofo |
|
59 |
57 58
|
syl |
|
60 |
|
ovexd |
|
61 |
53 54 59 60 13 4
|
imastopn |
|
62 |
5 2
|
istps |
|
63 |
50 62
|
sylib |
|
64 |
6 3
|
istps |
|
65 |
51 64
|
sylib |
|
66 |
7 63 65
|
xpstopnlem1 |
|
67 |
|
hmeocnv |
|
68 |
|
hmeoqtop |
|
69 |
66 67 68
|
3syl |
|
70 |
49 61 69
|
3eqtr4d |
|