Metamath Proof Explorer


Theorem xpsval

Description: Value of the binary structure product function. (Contributed by Mario Carneiro, 14-Aug-2015) (Revised by Jim Kingdon, 25-Sep-2023)

Ref Expression
Hypotheses xpsval.t T = R × 𝑠 S
xpsval.x X = Base R
xpsval.y Y = Base S
xpsval.1 φ R V
xpsval.2 φ S W
xpsval.f F = x X , y Y x 1 𝑜 y
xpsval.k G = Scalar R
xpsval.u U = G 𝑠 R 1 𝑜 S
Assertion xpsval φ T = F -1 𝑠 U

Proof

Step Hyp Ref Expression
1 xpsval.t T = R × 𝑠 S
2 xpsval.x X = Base R
3 xpsval.y Y = Base S
4 xpsval.1 φ R V
5 xpsval.2 φ S W
6 xpsval.f F = x X , y Y x 1 𝑜 y
7 xpsval.k G = Scalar R
8 xpsval.u U = G 𝑠 R 1 𝑜 S
9 4 elexd φ R V
10 5 elexd φ S V
11 fveq2 r = R Base r = Base R
12 11 2 eqtr4di r = R Base r = X
13 fveq2 s = S Base s = Base S
14 13 3 eqtr4di s = S Base s = Y
15 mpoeq12 Base r = X Base s = Y x Base r , y Base s x 1 𝑜 y = x X , y Y x 1 𝑜 y
16 12 14 15 syl2an r = R s = S x Base r , y Base s x 1 𝑜 y = x X , y Y x 1 𝑜 y
17 16 6 eqtr4di r = R s = S x Base r , y Base s x 1 𝑜 y = F
18 17 cnveqd r = R s = S x Base r , y Base s x 1 𝑜 y -1 = F -1
19 fveq2 r = R Scalar r = Scalar R
20 19 adantr r = R s = S Scalar r = Scalar R
21 20 7 eqtr4di r = R s = S Scalar r = G
22 simpl r = R s = S r = R
23 22 opeq2d r = R s = S r = R
24 simpr r = R s = S s = S
25 24 opeq2d r = R s = S 1 𝑜 s = 1 𝑜 S
26 23 25 preq12d r = R s = S r 1 𝑜 s = R 1 𝑜 S
27 21 26 oveq12d r = R s = S Scalar r 𝑠 r 1 𝑜 s = G 𝑠 R 1 𝑜 S
28 27 8 eqtr4di r = R s = S Scalar r 𝑠 r 1 𝑜 s = U
29 18 28 oveq12d r = R s = S x Base r , y Base s x 1 𝑜 y -1 𝑠 Scalar r 𝑠 r 1 𝑜 s = F -1 𝑠 U
30 df-xps × 𝑠 = r V , s V x Base r , y Base s x 1 𝑜 y -1 𝑠 Scalar r 𝑠 r 1 𝑜 s
31 ovex F -1 𝑠 U V
32 29 30 31 ovmpoa R V S V R × 𝑠 S = F -1 𝑠 U
33 9 10 32 syl2anc φ R × 𝑠 S = F -1 𝑠 U
34 1 33 syl5eq φ T = F -1 𝑠 U