Metamath Proof Explorer


Theorem xpsxmet

Description: A product metric of extended metrics is an extended metric. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypotheses xpsds.t T = R × 𝑠 S
xpsds.x X = Base R
xpsds.y Y = Base S
xpsds.1 φ R V
xpsds.2 φ S W
xpsds.p P = dist T
xpsds.m M = dist R X × X
xpsds.n N = dist S Y × Y
xpsds.3 φ M ∞Met X
xpsds.4 φ N ∞Met Y
Assertion xpsxmet φ P ∞Met X × Y

Proof

Step Hyp Ref Expression
1 xpsds.t T = R × 𝑠 S
2 xpsds.x X = Base R
3 xpsds.y Y = Base S
4 xpsds.1 φ R V
5 xpsds.2 φ S W
6 xpsds.p P = dist T
7 xpsds.m M = dist R X × X
8 xpsds.n N = dist S Y × Y
9 xpsds.3 φ M ∞Met X
10 xpsds.4 φ N ∞Met Y
11 eqid x X , y Y x 1 𝑜 y = x X , y Y x 1 𝑜 y
12 eqid Scalar R = Scalar R
13 eqid Scalar R 𝑠 R 1 𝑜 S = Scalar R 𝑠 R 1 𝑜 S
14 1 2 3 4 5 11 12 13 xpsval φ T = x X , y Y x 1 𝑜 y -1 𝑠 Scalar R 𝑠 R 1 𝑜 S
15 1 2 3 4 5 11 12 13 xpsrnbas φ ran x X , y Y x 1 𝑜 y = Base Scalar R 𝑠 R 1 𝑜 S
16 11 xpsff1o2 x X , y Y x 1 𝑜 y : X × Y 1-1 onto ran x X , y Y x 1 𝑜 y
17 f1ocnv x X , y Y x 1 𝑜 y : X × Y 1-1 onto ran x X , y Y x 1 𝑜 y x X , y Y x 1 𝑜 y -1 : ran x X , y Y x 1 𝑜 y 1-1 onto X × Y
18 16 17 mp1i φ x X , y Y x 1 𝑜 y -1 : ran x X , y Y x 1 𝑜 y 1-1 onto X × Y
19 ovexd φ Scalar R 𝑠 R 1 𝑜 S V
20 eqid dist Scalar R 𝑠 R 1 𝑜 S ran x X , y Y x 1 𝑜 y × ran x X , y Y x 1 𝑜 y = dist Scalar R 𝑠 R 1 𝑜 S ran x X , y Y x 1 𝑜 y × ran x X , y Y x 1 𝑜 y
21 1 2 3 4 5 6 7 8 9 10 xpsxmetlem φ dist Scalar R 𝑠 R 1 𝑜 S ∞Met ran x X , y Y x 1 𝑜 y
22 ssid ran x X , y Y x 1 𝑜 y ran x X , y Y x 1 𝑜 y
23 xmetres2 dist Scalar R 𝑠 R 1 𝑜 S ∞Met ran x X , y Y x 1 𝑜 y ran x X , y Y x 1 𝑜 y ran x X , y Y x 1 𝑜 y dist Scalar R 𝑠 R 1 𝑜 S ran x X , y Y x 1 𝑜 y × ran x X , y Y x 1 𝑜 y ∞Met ran x X , y Y x 1 𝑜 y
24 21 22 23 sylancl φ dist Scalar R 𝑠 R 1 𝑜 S ran x X , y Y x 1 𝑜 y × ran x X , y Y x 1 𝑜 y ∞Met ran x X , y Y x 1 𝑜 y
25 14 15 18 19 20 6 24 imasf1oxmet φ P ∞Met X × Y