Step |
Hyp |
Ref |
Expression |
1 |
|
brwdom3i |
|
2 |
1
|
adantr |
|
3 |
|
brwdom3i |
|
4 |
3
|
adantl |
|
5 |
|
relwdom |
|
6 |
5
|
brrelex1i |
|
7 |
5
|
brrelex1i |
|
8 |
|
xpexg |
|
9 |
6 7 8
|
syl2an |
|
10 |
9
|
adantr |
|
11 |
5
|
brrelex2i |
|
12 |
5
|
brrelex2i |
|
13 |
|
xpexg |
|
14 |
11 12 13
|
syl2an |
|
15 |
14
|
adantr |
|
16 |
|
pm3.2 |
|
17 |
16
|
ralimdv |
|
18 |
17
|
com12 |
|
19 |
18
|
ralimdv |
|
20 |
19
|
impcom |
|
21 |
|
pm3.2 |
|
22 |
21
|
reximdv |
|
23 |
22
|
com12 |
|
24 |
23
|
reximdv |
|
25 |
24
|
impcom |
|
26 |
25
|
2ralimi |
|
27 |
20 26
|
syl |
|
28 |
|
eqeq1 |
|
29 |
|
vex |
|
30 |
|
vex |
|
31 |
29 30
|
opth |
|
32 |
28 31
|
bitrdi |
|
33 |
32
|
2rexbidv |
|
34 |
33
|
ralxp |
|
35 |
27 34
|
sylibr |
|
36 |
35
|
r19.21bi |
|
37 |
|
vex |
|
38 |
|
vex |
|
39 |
37 38
|
op1std |
|
40 |
39
|
fveq2d |
|
41 |
37 38
|
op2ndd |
|
42 |
41
|
fveq2d |
|
43 |
40 42
|
opeq12d |
|
44 |
43
|
eqeq2d |
|
45 |
44
|
rexxp |
|
46 |
36 45
|
sylibr |
|
47 |
46
|
adantll |
|
48 |
10 15 47
|
wdom2d |
|
49 |
48
|
expr |
|
50 |
49
|
exlimdv |
|
51 |
50
|
ex |
|
52 |
51
|
exlimdv |
|
53 |
2 4 52
|
mp2d |
|