Metamath Proof Explorer


Theorem xralrple2

Description: Show that A is less than B by showing that there is no positive bound on the difference. A variant on xralrple . (Contributed by Glauco Siliprandi, 21-Nov-2020)

Ref Expression
Hypotheses xralrple2.x x φ
xralrple2.a φ A *
xralrple2.b φ B 0 +∞
Assertion xralrple2 φ A B x + A 1 + x B

Proof

Step Hyp Ref Expression
1 xralrple2.x x φ
2 xralrple2.a φ A *
3 xralrple2.b φ B 0 +∞
4 nfv x A B
5 1 4 nfan x φ A B
6 2 ad2antrr φ A B x + A *
7 icossxr 0 +∞ *
8 3 ad2antrr φ A B x + B 0 +∞
9 7 8 sselid φ A B x + B *
10 1red φ x + 1
11 rpre x + x
12 11 adantl φ x + x
13 10 12 readdcld φ x + 1 + x
14 rge0ssre 0 +∞
15 14 3 sselid φ B
16 15 adantr φ x + B
17 13 16 remulcld φ x + 1 + x B
18 17 rexrd φ x + 1 + x B *
19 18 adantlr φ A B x + 1 + x B *
20 simplr φ A B x + A B
21 15 ad2antrr φ A B x + B
22 1red x + 1
23 22 11 readdcld x + 1 + x
24 23 adantl φ A B x + 1 + x
25 0xr 0 *
26 25 a1i B 0 +∞ 0 *
27 pnfxr +∞ *
28 27 a1i B 0 +∞ +∞ *
29 id B 0 +∞ B 0 +∞
30 icogelb 0 * +∞ * B 0 +∞ 0 B
31 26 28 29 30 syl3anc B 0 +∞ 0 B
32 3 31 syl φ 0 B
33 32 ad2antrr φ A B x + 0 B
34 id x + x +
35 22 34 ltaddrpd x + 1 < 1 + x
36 22 23 35 ltled x + 1 1 + x
37 36 adantl φ A B x + 1 1 + x
38 21 24 33 37 lemulge12d φ A B x + B 1 + x B
39 6 9 19 20 38 xrletrd φ A B x + A 1 + x B
40 39 ex φ A B x + A 1 + x B
41 5 40 ralrimi φ A B x + A 1 + x B
42 41 ex φ A B x + A 1 + x B
43 2 ad3antrrr φ x + A 1 + x B y + B = 0 A *
44 id B = 0 B = 0
45 0red B = 0 0
46 44 45 eqeltrd B = 0 B
47 46 adantl y + B = 0 B
48 rpre y + y
49 48 adantr y + B = 0 y
50 47 49 readdcld y + B = 0 B + y
51 50 rexrd y + B = 0 B + y *
52 51 adantll φ x + A 1 + x B y + B = 0 B + y *
53 25 a1i φ x + A 1 + x B y + B = 0 0 *
54 1rp 1 +
55 54 a1i x + A 1 + x B 1 +
56 id x + A 1 + x B x + A 1 + x B
57 oveq2 x = 1 1 + x = 1 + 1
58 57 oveq1d x = 1 1 + x B = 1 + 1 B
59 58 breq2d x = 1 A 1 + x B A 1 + 1 B
60 59 rspcva 1 + x + A 1 + x B A 1 + 1 B
61 55 56 60 syl2anc x + A 1 + x B A 1 + 1 B
62 1p1e2 1 + 1 = 2
63 62 a1i x + A 1 + x B 1 + 1 = 2
64 63 oveq1d x + A 1 + x B 1 + 1 B = 2 B
65 61 64 breqtrd x + A 1 + x B A 2 B
66 65 adantr x + A 1 + x B B = 0 A 2 B
67 simpr x + A 1 + x B B = 0 B = 0
68 simpl A 2 B B = 0 A 2 B
69 oveq2 B = 0 2 B = 2 0
70 2cnd B = 0 2
71 70 mul01d B = 0 2 0 = 0
72 69 71 eqtrd B = 0 2 B = 0
73 72 adantl A 2 B B = 0 2 B = 0
74 68 73 breqtrd A 2 B B = 0 A 0
75 66 67 74 syl2anc x + A 1 + x B B = 0 A 0
76 75 ad4ant24 φ x + A 1 + x B y + B = 0 A 0
77 rpgt0 y + 0 < y
78 77 adantr y + B = 0 0 < y
79 oveq1 B = 0 B + y = 0 + y
80 79 adantl y + B = 0 B + y = 0 + y
81 48 recnd y + y
82 81 adantr y + B = 0 y
83 82 addid2d y + B = 0 0 + y = y
84 80 83 eqtr2d y + B = 0 y = B + y
85 78 84 breqtrd y + B = 0 0 < B + y
86 85 adantll φ x + A 1 + x B y + B = 0 0 < B + y
87 43 53 52 76 86 xrlelttrd φ x + A 1 + x B y + B = 0 A < B + y
88 43 52 87 xrltled φ x + A 1 + x B y + B = 0 A B + y
89 simpl φ x + A 1 + x B y + ¬ B = 0 φ x + A 1 + x B y +
90 15 adantr φ ¬ B = 0 B
91 0red φ ¬ B = 0 0
92 32 adantr φ ¬ B = 0 0 B
93 44 necon3bi ¬ B = 0 B 0
94 93 adantl φ ¬ B = 0 B 0
95 91 90 92 94 leneltd φ ¬ B = 0 0 < B
96 90 95 elrpd φ ¬ B = 0 B +
97 96 ad4ant14 φ x + A 1 + x B y + ¬ B = 0 B +
98 simplr x + A 1 + x B y + B + y +
99 simpr x + A 1 + x B y + B + B +
100 98 99 rpdivcld x + A 1 + x B y + B + y B +
101 simpll x + A 1 + x B y + B + x + A 1 + x B
102 oveq2 x = y B 1 + x = 1 + y B
103 102 oveq1d x = y B 1 + x B = 1 + y B B
104 103 breq2d x = y B A 1 + x B A 1 + y B B
105 104 rspcva y B + x + A 1 + x B A 1 + y B B
106 100 101 105 syl2anc x + A 1 + x B y + B + A 1 + y B B
107 106 adantlll φ x + A 1 + x B y + B + A 1 + y B B
108 1cnd y + B + 1
109 81 adantr y + B + y
110 rpcn B + B
111 110 adantl y + B + B
112 rpne0 B + B 0
113 112 adantl y + B + B 0
114 109 111 113 divcld y + B + y B
115 108 114 111 adddird y + B + 1 + y B B = 1 B + y B B
116 111 mulid2d y + B + 1 B = B
117 109 111 113 divcan1d y + B + y B B = y
118 116 117 oveq12d y + B + 1 B + y B B = B + y
119 eqidd y + B + B + y = B + y
120 115 118 119 3eqtrd y + B + 1 + y B B = B + y
121 120 adantll φ x + A 1 + x B y + B + 1 + y B B = B + y
122 107 121 breqtrd φ x + A 1 + x B y + B + A B + y
123 89 97 122 syl2anc φ x + A 1 + x B y + ¬ B = 0 A B + y
124 88 123 pm2.61dan φ x + A 1 + x B y + A B + y
125 124 ralrimiva φ x + A 1 + x B y + A B + y
126 xralrple A * B A B y + A B + y
127 2 15 126 syl2anc φ A B y + A B + y
128 127 adantr φ x + A 1 + x B A B y + A B + y
129 125 128 mpbird φ x + A 1 + x B A B
130 129 ex φ x + A 1 + x B A B
131 42 130 impbid φ A B x + A 1 + x B