Step |
Hyp |
Ref |
Expression |
1 |
|
xralrple3.a |
|
2 |
|
xralrple3.b |
|
3 |
|
xralrple3.c |
|
4 |
|
xralrple3.g |
|
5 |
1
|
ad2antrr |
|
6 |
2
|
rexrd |
|
7 |
6
|
ad2antrr |
|
8 |
2
|
ad2antrr |
|
9 |
3
|
ad2antrr |
|
10 |
|
rpre |
|
11 |
10
|
adantl |
|
12 |
9 11
|
remulcld |
|
13 |
8 12
|
readdcld |
|
14 |
13
|
rexrd |
|
15 |
|
simplr |
|
16 |
3
|
adantr |
|
17 |
10
|
adantl |
|
18 |
4
|
adantr |
|
19 |
|
rpge0 |
|
20 |
19
|
adantl |
|
21 |
16 17 18 20
|
mulge0d |
|
22 |
2
|
adantr |
|
23 |
16 17
|
remulcld |
|
24 |
22 23
|
addge01d |
|
25 |
21 24
|
mpbid |
|
26 |
25
|
adantlr |
|
27 |
5 7 14 15 26
|
xrletrd |
|
28 |
27
|
ralrimiva |
|
29 |
28
|
ex |
|
30 |
|
1rp |
|
31 |
|
oveq2 |
|
32 |
31
|
oveq2d |
|
33 |
32
|
breq2d |
|
34 |
33
|
rspcva |
|
35 |
30 34
|
mpan |
|
36 |
35
|
ad2antlr |
|
37 |
|
oveq1 |
|
38 |
|
0cn |
|
39 |
38
|
mulid1i |
|
40 |
39
|
a1i |
|
41 |
37 40
|
eqtrd |
|
42 |
41
|
oveq2d |
|
43 |
42
|
adantl |
|
44 |
2
|
recnd |
|
45 |
44
|
adantr |
|
46 |
45
|
addid1d |
|
47 |
43 46
|
eqtrd |
|
48 |
47
|
adantlr |
|
49 |
36 48
|
breqtrd |
|
50 |
|
neqne |
|
51 |
50
|
adantl |
|
52 |
3
|
adantr |
|
53 |
|
0red |
|
54 |
4
|
adantr |
|
55 |
|
simpr |
|
56 |
53 52 54 55
|
leneltd |
|
57 |
52 56
|
elrpd |
|
58 |
51 57
|
syldan |
|
59 |
58
|
adantlr |
|
60 |
|
simpr |
|
61 |
|
simpl |
|
62 |
60 61
|
rpdivcld |
|
63 |
62
|
adantll |
|
64 |
|
simpll |
|
65 |
|
oveq2 |
|
66 |
65
|
oveq2d |
|
67 |
66
|
breq2d |
|
68 |
67
|
rspcva |
|
69 |
63 64 68
|
syl2anc |
|
70 |
69
|
adantlll |
|
71 |
60
|
rpcnd |
|
72 |
61
|
rpcnd |
|
73 |
61
|
rpne0d |
|
74 |
71 72 73
|
divcan2d |
|
75 |
74
|
adantll |
|
76 |
75
|
oveq2d |
|
77 |
70 76
|
breqtrd |
|
78 |
77
|
ralrimiva |
|
79 |
|
xralrple |
|
80 |
1 2 79
|
syl2anc |
|
81 |
80
|
ad2antrr |
|
82 |
78 81
|
mpbird |
|
83 |
59 82
|
syldan |
|
84 |
49 83
|
pm2.61dan |
|
85 |
84
|
ex |
|
86 |
29 85
|
impbid |
|