Metamath Proof Explorer


Theorem xrdifh

Description: Class difference of a half-open interval in the extended reals. (Contributed by Thierry Arnoux, 1-Aug-2017)

Ref Expression
Hypothesis xrdifh.1 A *
Assertion xrdifh * A +∞ = −∞ A

Proof

Step Hyp Ref Expression
1 xrdifh.1 A *
2 biortn x * ¬ A x ¬ x +∞ ¬ x * ¬ A x ¬ x +∞
3 pnfge x * x +∞
4 3 notnotd x * ¬ ¬ x +∞
5 biorf ¬ ¬ x +∞ ¬ A x ¬ x +∞ ¬ A x
6 4 5 syl x * ¬ A x ¬ x +∞ ¬ A x
7 orcom ¬ A x ¬ x +∞ ¬ x +∞ ¬ A x
8 6 7 bitr4di x * ¬ A x ¬ A x ¬ x +∞
9 pnfxr +∞ *
10 elicc1 A * +∞ * x A +∞ x * A x x +∞
11 1 9 10 mp2an x A +∞ x * A x x +∞
12 11 notbii ¬ x A +∞ ¬ x * A x x +∞
13 3ianor ¬ x * A x x +∞ ¬ x * ¬ A x ¬ x +∞
14 3orass ¬ x * ¬ A x ¬ x +∞ ¬ x * ¬ A x ¬ x +∞
15 12 13 14 3bitri ¬ x A +∞ ¬ x * ¬ A x ¬ x +∞
16 15 a1i x * ¬ x A +∞ ¬ x * ¬ A x ¬ x +∞
17 2 8 16 3bitr4rd x * ¬ x A +∞ ¬ A x
18 xrltnle x * A * x < A ¬ A x
19 1 18 mpan2 x * x < A ¬ A x
20 17 19 bitr4d x * ¬ x A +∞ x < A
21 20 pm5.32i x * ¬ x A +∞ x * x < A
22 eldif x * A +∞ x * ¬ x A +∞
23 3anass x * −∞ x x < A x * −∞ x x < A
24 mnfxr −∞ *
25 elico1 −∞ * A * x −∞ A x * −∞ x x < A
26 24 1 25 mp2an x −∞ A x * −∞ x x < A
27 mnfle x * −∞ x
28 27 biantrurd x * x < A −∞ x x < A
29 28 pm5.32i x * x < A x * −∞ x x < A
30 23 26 29 3bitr4i x −∞ A x * x < A
31 21 22 30 3bitr4i x * A +∞ x −∞ A
32 31 eqriv * A +∞ = −∞ A