Metamath Proof Explorer


Theorem xreqle

Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion xreqle A * A = B A B

Proof

Step Hyp Ref Expression
1 xrleid A * A A
2 1 adantr A * A = B A A
3 simpr A * A = B A = B
4 breq2 A = B A A A B
5 4 biimpac A A A = B A B
6 2 3 5 syl2anc A * A = B A B