Metamath Proof Explorer


Theorem xreqled

Description: Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xreqled.1 φ A *
xreqled.2 φ A = B
Assertion xreqled φ A B

Proof

Step Hyp Ref Expression
1 xreqled.1 φ A *
2 xreqled.2 φ A = B
3 xreqle A * A = B A B
4 1 2 3 syl2anc φ A B