Metamath Proof Explorer


Theorem xreqnltd

Description: A consequence of trichotomy. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses xreqnltd.1 φ A *
xreqnltd.2 φ A = B
Assertion xreqnltd φ ¬ A < B

Proof

Step Hyp Ref Expression
1 xreqnltd.1 φ A *
2 xreqnltd.2 φ A = B
3 2 1 eqeltrrd φ B *
4 xrlttri3 A * B * A = B ¬ A < B ¬ B < A
5 1 3 4 syl2anc φ A = B ¬ A < B ¬ B < A
6 2 5 mpbid φ ¬ A < B ¬ B < A
7 6 simpld φ ¬ A < B