Metamath Proof Explorer


Theorem xrge0addass

Description: Associativity of extended nonnegative real addition. (Contributed by Thierry Arnoux, 8-Jun-2017)

Ref Expression
Assertion xrge0addass A 0 +∞ B 0 +∞ C 0 +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C

Proof

Step Hyp Ref Expression
1 iccssxr 0 +∞ *
2 simp1 A 0 +∞ B 0 +∞ C 0 +∞ A 0 +∞
3 1 2 sselid A 0 +∞ B 0 +∞ C 0 +∞ A *
4 0xr 0 *
5 4 a1i A 0 +∞ B 0 +∞ C 0 +∞ 0 *
6 pnfxr +∞ *
7 6 a1i A 0 +∞ B 0 +∞ C 0 +∞ +∞ *
8 elicc4 0 * +∞ * A * A 0 +∞ 0 A A +∞
9 5 7 3 8 syl3anc A 0 +∞ B 0 +∞ C 0 +∞ A 0 +∞ 0 A A +∞
10 2 9 mpbid A 0 +∞ B 0 +∞ C 0 +∞ 0 A A +∞
11 10 simpld A 0 +∞ B 0 +∞ C 0 +∞ 0 A
12 ge0nemnf A * 0 A A −∞
13 3 11 12 syl2anc A 0 +∞ B 0 +∞ C 0 +∞ A −∞
14 simp2 A 0 +∞ B 0 +∞ C 0 +∞ B 0 +∞
15 1 14 sselid A 0 +∞ B 0 +∞ C 0 +∞ B *
16 elicc4 0 * +∞ * B * B 0 +∞ 0 B B +∞
17 5 7 15 16 syl3anc A 0 +∞ B 0 +∞ C 0 +∞ B 0 +∞ 0 B B +∞
18 14 17 mpbid A 0 +∞ B 0 +∞ C 0 +∞ 0 B B +∞
19 18 simpld A 0 +∞ B 0 +∞ C 0 +∞ 0 B
20 ge0nemnf B * 0 B B −∞
21 15 19 20 syl2anc A 0 +∞ B 0 +∞ C 0 +∞ B −∞
22 simp3 A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞
23 1 22 sselid A 0 +∞ B 0 +∞ C 0 +∞ C *
24 elicc4 0 * +∞ * C * C 0 +∞ 0 C C +∞
25 5 7 23 24 syl3anc A 0 +∞ B 0 +∞ C 0 +∞ C 0 +∞ 0 C C +∞
26 22 25 mpbid A 0 +∞ B 0 +∞ C 0 +∞ 0 C C +∞
27 26 simpld A 0 +∞ B 0 +∞ C 0 +∞ 0 C
28 ge0nemnf C * 0 C C −∞
29 23 27 28 syl2anc A 0 +∞ B 0 +∞ C 0 +∞ C −∞
30 xaddass A * A −∞ B * B −∞ C * C −∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C
31 3 13 15 21 23 29 30 syl222anc A 0 +∞ B 0 +∞ C 0 +∞ A + 𝑒 B + 𝑒 C = A + 𝑒 B + 𝑒 C