Metamath Proof Explorer


Theorem xrge0cmn

Description: The nonnegative extended real numbers are a monoid. (Contributed by Mario Carneiro, 30-Aug-2015)

Ref Expression
Assertion xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd

Proof

Step Hyp Ref Expression
1 eqid 𝑠 * 𝑠 * −∞ = 𝑠 * 𝑠 * −∞
2 1 xrs1cmn 𝑠 * 𝑠 * −∞ CMnd
3 1 xrge0subm 0 +∞ SubMnd 𝑠 * 𝑠 * −∞
4 xrex * V
5 4 difexi * −∞ V
6 difss * −∞ *
7 xrsbas * = Base 𝑠 *
8 1 7 ressbas2 * −∞ * * −∞ = Base 𝑠 * 𝑠 * −∞
9 6 8 ax-mp * −∞ = Base 𝑠 * 𝑠 * −∞
10 9 submss 0 +∞ SubMnd 𝑠 * 𝑠 * −∞ 0 +∞ * −∞
11 3 10 ax-mp 0 +∞ * −∞
12 ressabs * −∞ V 0 +∞ * −∞ 𝑠 * 𝑠 * −∞ 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
13 5 11 12 mp2an 𝑠 * 𝑠 * −∞ 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
14 13 eqcomi 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 * −∞ 𝑠 0 +∞
15 14 submmnd 0 +∞ SubMnd 𝑠 * 𝑠 * −∞ 𝑠 * 𝑠 0 +∞ Mnd
16 3 15 ax-mp 𝑠 * 𝑠 0 +∞ Mnd
17 14 subcmn 𝑠 * 𝑠 * −∞ CMnd 𝑠 * 𝑠 0 +∞ Mnd 𝑠 * 𝑠 0 +∞ CMnd
18 2 16 17 mp2an 𝑠 * 𝑠 0 +∞ CMnd