Metamath Proof Explorer


Theorem xrge0gsumle

Description: A finite sum in the nonnegative extended reals is monotonic in the support. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Hypotheses xrge0gsumle.g G = 𝑠 * 𝑠 0 +∞
xrge0gsumle.a φ A V
xrge0gsumle.f φ F : A 0 +∞
xrge0gsumle.b φ B 𝒫 A Fin
xrge0gsumle.c φ C B
Assertion xrge0gsumle φ G F C G F B

Proof

Step Hyp Ref Expression
1 xrge0gsumle.g G = 𝑠 * 𝑠 0 +∞
2 xrge0gsumle.a φ A V
3 xrge0gsumle.f φ F : A 0 +∞
4 xrge0gsumle.b φ B 𝒫 A Fin
5 xrge0gsumle.c φ C B
6 iccssxr 0 +∞ *
7 xrsbas * = Base 𝑠 *
8 1 7 ressbas2 0 +∞ * 0 +∞ = Base G
9 6 8 ax-mp 0 +∞ = Base G
10 eqid 𝑠 * 𝑠 * −∞ = 𝑠 * 𝑠 * −∞
11 10 xrge0subm 0 +∞ SubMnd 𝑠 * 𝑠 * −∞
12 xrex * V
13 12 difexi * −∞ V
14 simpl x * 0 x x *
15 ge0nemnf x * 0 x x −∞
16 14 15 jca x * 0 x x * x −∞
17 elxrge0 x 0 +∞ x * 0 x
18 eldifsn x * −∞ x * x −∞
19 16 17 18 3imtr4i x 0 +∞ x * −∞
20 19 ssriv 0 +∞ * −∞
21 ressabs * −∞ V 0 +∞ * −∞ 𝑠 * 𝑠 * −∞ 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
22 13 20 21 mp2an 𝑠 * 𝑠 * −∞ 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
23 1 22 eqtr4i G = 𝑠 * 𝑠 * −∞ 𝑠 0 +∞
24 10 xrs10 0 = 0 𝑠 * 𝑠 * −∞
25 23 24 subm0 0 +∞ SubMnd 𝑠 * 𝑠 * −∞ 0 = 0 G
26 11 25 ax-mp 0 = 0 G
27 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
28 1 27 eqeltri G CMnd
29 28 a1i φ s 𝒫 A Fin G CMnd
30 elfpw s 𝒫 A Fin s A s Fin
31 30 simprbi s 𝒫 A Fin s Fin
32 31 adantl φ s 𝒫 A Fin s Fin
33 30 simplbi s 𝒫 A Fin s A
34 fssres F : A 0 +∞ s A F s : s 0 +∞
35 3 33 34 syl2an φ s 𝒫 A Fin F s : s 0 +∞
36 c0ex 0 V
37 36 a1i φ s 𝒫 A Fin 0 V
38 35 32 37 fdmfifsupp φ s 𝒫 A Fin finSupp 0 F s
39 9 26 29 32 35 38 gsumcl φ s 𝒫 A Fin G F s 0 +∞
40 6 39 sselid φ s 𝒫 A Fin G F s *
41 40 fmpttd φ s 𝒫 A Fin G F s : 𝒫 A Fin *
42 41 frnd φ ran s 𝒫 A Fin G F s *
43 0ss A
44 0fin Fin
45 elfpw 𝒫 A Fin A Fin
46 43 44 45 mpbir2an 𝒫 A Fin
47 0cn 0
48 eqid s 𝒫 A Fin G F s = s 𝒫 A Fin G F s
49 reseq2 s = F s = F
50 res0 F =
51 49 50 eqtrdi s = F s =
52 51 oveq2d s = G F s = G
53 26 gsum0 G = 0
54 52 53 eqtrdi s = G F s = 0
55 48 54 elrnmpt1s 𝒫 A Fin 0 0 ran s 𝒫 A Fin G F s
56 46 47 55 mp2an 0 ran s 𝒫 A Fin G F s
57 56 a1i φ 0 ran s 𝒫 A Fin G F s
58 42 57 sseldd φ 0 *
59 28 a1i φ G CMnd
60 4 elin2d φ B Fin
61 diffi B Fin B C Fin
62 60 61 syl φ B C Fin
63 elfpw B 𝒫 A Fin B A B Fin
64 63 simplbi B 𝒫 A Fin B A
65 4 64 syl φ B A
66 65 ssdifssd φ B C A
67 3 66 fssresd φ F B C : B C 0 +∞
68 36 a1i φ 0 V
69 67 62 68 fdmfifsupp φ finSupp 0 F B C
70 9 26 59 62 67 69 gsumcl φ G F B C 0 +∞
71 6 70 sselid φ G F B C *
72 60 5 ssfid φ C Fin
73 5 65 sstrd φ C A
74 3 73 fssresd φ F C : C 0 +∞
75 74 72 68 fdmfifsupp φ finSupp 0 F C
76 9 26 59 72 74 75 gsumcl φ G F C 0 +∞
77 6 76 sselid φ G F C *
78 elxrge0 G F B C 0 +∞ G F B C * 0 G F B C
79 78 simprbi G F B C 0 +∞ 0 G F B C
80 70 79 syl φ 0 G F B C
81 xleadd2a 0 * G F B C * G F C * 0 G F B C G F C + 𝑒 0 G F C + 𝑒 G F B C
82 58 71 77 80 81 syl31anc φ G F C + 𝑒 0 G F C + 𝑒 G F B C
83 77 xaddid1d φ G F C + 𝑒 0 = G F C
84 ovex 0 +∞ V
85 xrsadd + 𝑒 = + 𝑠 *
86 1 85 ressplusg 0 +∞ V + 𝑒 = + G
87 84 86 ax-mp + 𝑒 = + G
88 3 65 fssresd φ F B : B 0 +∞
89 88 60 68 fdmfifsupp φ finSupp 0 F B
90 disjdif C B C =
91 90 a1i φ C B C =
92 undif2 C B C = C B
93 ssequn1 C B C B = B
94 5 93 sylib φ C B = B
95 92 94 eqtr2id φ B = C B C
96 9 26 87 59 4 88 89 91 95 gsumsplit φ G F B = G F B C + 𝑒 G F B B C
97 5 resabs1d φ F B C = F C
98 97 oveq2d φ G F B C = G F C
99 difss B C B
100 resabs1 B C B F B B C = F B C
101 99 100 mp1i φ F B B C = F B C
102 101 oveq2d φ G F B B C = G F B C
103 98 102 oveq12d φ G F B C + 𝑒 G F B B C = G F C + 𝑒 G F B C
104 96 103 eqtr2d φ G F C + 𝑒 G F B C = G F B
105 82 83 104 3brtr3d φ G F C G F B