Metamath Proof Explorer


Theorem xrge0iifcnv

Description: Define a bijection from [ 0 , 1 ] onto [ 0 , +oo ] . (Contributed by Thierry Arnoux, 29-Mar-2017)

Ref Expression
Hypothesis xrge0iifhmeo.1 F = x 0 1 if x = 0 +∞ log x
Assertion xrge0iifcnv F : 0 1 1-1 onto 0 +∞ F -1 = y 0 +∞ if y = +∞ 0 e y

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F = x 0 1 if x = 0 +∞ log x
2 0xr 0 *
3 pnfxr +∞ *
4 0lepnf 0 +∞
5 ubicc2 0 * +∞ * 0 +∞ +∞ 0 +∞
6 2 3 4 5 mp3an +∞ 0 +∞
7 6 a1i x 0 1 x = 0 +∞ 0 +∞
8 icossicc 0 +∞ 0 +∞
9 uncom 0 0 1 = 0 1 0
10 1xr 1 *
11 0le1 0 1
12 snunioc 0 * 1 * 0 1 0 0 1 = 0 1
13 2 10 11 12 mp3an 0 0 1 = 0 1
14 9 13 eqtr3i 0 1 0 = 0 1
15 14 eleq2i x 0 1 0 x 0 1
16 elun x 0 1 0 x 0 1 x 0
17 15 16 bitr3i x 0 1 x 0 1 x 0
18 pm2.53 x 0 1 x 0 ¬ x 0 1 x 0
19 17 18 sylbi x 0 1 ¬ x 0 1 x 0
20 elsni x 0 x = 0
21 19 20 syl6 x 0 1 ¬ x 0 1 x = 0
22 21 con1d x 0 1 ¬ x = 0 x 0 1
23 22 imp x 0 1 ¬ x = 0 x 0 1
24 0le0 0 0
25 1re 1
26 ltpnf 1 1 < +∞
27 25 26 ax-mp 1 < +∞
28 iocssioo 0 * +∞ * 0 0 1 < +∞ 0 1 0 +∞
29 2 3 24 27 28 mp4an 0 1 0 +∞
30 ioorp 0 +∞ = +
31 29 30 sseqtri 0 1 +
32 31 sseli x 0 1 x +
33 32 relogcld x 0 1 log x
34 33 renegcld x 0 1 log x
35 34 rexrd x 0 1 log x *
36 elioc1 0 * 1 * x 0 1 x * 0 < x x 1
37 2 10 36 mp2an x 0 1 x * 0 < x x 1
38 37 simp3bi x 0 1 x 1
39 1rp 1 +
40 39 a1i x 0 1 1 +
41 32 40 logled x 0 1 x 1 log x log 1
42 38 41 mpbid x 0 1 log x log 1
43 log1 log 1 = 0
44 42 43 breqtrdi x 0 1 log x 0
45 33 le0neg1d x 0 1 log x 0 0 log x
46 44 45 mpbid x 0 1 0 log x
47 ltpnf log x log x < +∞
48 34 47 syl x 0 1 log x < +∞
49 elico1 0 * +∞ * log x 0 +∞ log x * 0 log x log x < +∞
50 2 3 49 mp2an log x 0 +∞ log x * 0 log x log x < +∞
51 35 46 48 50 syl3anbrc x 0 1 log x 0 +∞
52 23 51 syl x 0 1 ¬ x = 0 log x 0 +∞
53 8 52 sselid x 0 1 ¬ x = 0 log x 0 +∞
54 7 53 ifclda x 0 1 if x = 0 +∞ log x 0 +∞
55 54 adantl x 0 1 if x = 0 +∞ log x 0 +∞
56 0elunit 0 0 1
57 56 a1i y 0 +∞ y = +∞ 0 0 1
58 iocssicc 0 1 0 1
59 snunico 0 * +∞ * 0 +∞ 0 +∞ +∞ = 0 +∞
60 2 3 4 59 mp3an 0 +∞ +∞ = 0 +∞
61 60 eleq2i y 0 +∞ +∞ y 0 +∞
62 elun y 0 +∞ +∞ y 0 +∞ y +∞
63 61 62 bitr3i y 0 +∞ y 0 +∞ y +∞
64 pm2.53 y 0 +∞ y +∞ ¬ y 0 +∞ y +∞
65 63 64 sylbi y 0 +∞ ¬ y 0 +∞ y +∞
66 elsni y +∞ y = +∞
67 65 66 syl6 y 0 +∞ ¬ y 0 +∞ y = +∞
68 67 con1d y 0 +∞ ¬ y = +∞ y 0 +∞
69 68 imp y 0 +∞ ¬ y = +∞ y 0 +∞
70 rge0ssre 0 +∞
71 70 sseli y 0 +∞ y
72 71 renegcld y 0 +∞ y
73 72 reefcld y 0 +∞ e y
74 73 rexrd y 0 +∞ e y *
75 efgt0 y 0 < e y
76 72 75 syl y 0 +∞ 0 < e y
77 elico1 0 * +∞ * y 0 +∞ y * 0 y y < +∞
78 2 3 77 mp2an y 0 +∞ y * 0 y y < +∞
79 78 simp2bi y 0 +∞ 0 y
80 71 le0neg2d y 0 +∞ 0 y y 0
81 79 80 mpbid y 0 +∞ y 0
82 0re 0
83 efle y 0 y 0 e y e 0
84 72 82 83 sylancl y 0 +∞ y 0 e y e 0
85 81 84 mpbid y 0 +∞ e y e 0
86 ef0 e 0 = 1
87 85 86 breqtrdi y 0 +∞ e y 1
88 elioc1 0 * 1 * e y 0 1 e y * 0 < e y e y 1
89 2 10 88 mp2an e y 0 1 e y * 0 < e y e y 1
90 74 76 87 89 syl3anbrc y 0 +∞ e y 0 1
91 69 90 syl y 0 +∞ ¬ y = +∞ e y 0 1
92 58 91 sselid y 0 +∞ ¬ y = +∞ e y 0 1
93 57 92 ifclda y 0 +∞ if y = +∞ 0 e y 0 1
94 93 adantl y 0 +∞ if y = +∞ 0 e y 0 1
95 eqeq2 0 = if y = +∞ 0 e y x = 0 x = if y = +∞ 0 e y
96 95 bibi1d 0 = if y = +∞ 0 e y x = 0 y = if x = 0 +∞ log x x = if y = +∞ 0 e y y = if x = 0 +∞ log x
97 eqeq2 e y = if y = +∞ 0 e y x = e y x = if y = +∞ 0 e y
98 97 bibi1d e y = if y = +∞ 0 e y x = e y y = if x = 0 +∞ log x x = if y = +∞ 0 e y y = if x = 0 +∞ log x
99 simpr x 0 1 y 0 +∞ y = +∞ y = +∞
100 iftrue x = 0 if x = 0 +∞ log x = +∞
101 100 eqeq2d x = 0 y = if x = 0 +∞ log x y = +∞
102 99 101 syl5ibrcom x 0 1 y 0 +∞ y = +∞ x = 0 y = if x = 0 +∞ log x
103 ubico 0 +∞ * ¬ +∞ 0 +∞
104 82 3 103 mp2an ¬ +∞ 0 +∞
105 104 nelir +∞ 0 +∞
106 neleq1 y = +∞ y 0 +∞ +∞ 0 +∞
107 106 adantl x 0 1 y 0 +∞ y = +∞ y 0 +∞ +∞ 0 +∞
108 105 107 mpbiri x 0 1 y 0 +∞ y = +∞ y 0 +∞
109 neleq1 y = if x = 0 +∞ log x y 0 +∞ if x = 0 +∞ log x 0 +∞
110 108 109 syl5ibcom x 0 1 y 0 +∞ y = +∞ y = if x = 0 +∞ log x if x = 0 +∞ log x 0 +∞
111 df-nel if x = 0 +∞ log x 0 +∞ ¬ if x = 0 +∞ log x 0 +∞
112 iffalse ¬ x = 0 if x = 0 +∞ log x = log x
113 112 adantl x 0 1 ¬ x = 0 if x = 0 +∞ log x = log x
114 113 52 eqeltrd x 0 1 ¬ x = 0 if x = 0 +∞ log x 0 +∞
115 114 ex x 0 1 ¬ x = 0 if x = 0 +∞ log x 0 +∞
116 115 ad2antrr x 0 1 y 0 +∞ y = +∞ ¬ x = 0 if x = 0 +∞ log x 0 +∞
117 116 con1d x 0 1 y 0 +∞ y = +∞ ¬ if x = 0 +∞ log x 0 +∞ x = 0
118 111 117 syl5bi x 0 1 y 0 +∞ y = +∞ if x = 0 +∞ log x 0 +∞ x = 0
119 110 118 syld x 0 1 y 0 +∞ y = +∞ y = if x = 0 +∞ log x x = 0
120 102 119 impbid x 0 1 y 0 +∞ y = +∞ x = 0 y = if x = 0 +∞ log x
121 eqeq2 +∞ = if x = 0 +∞ log x y = +∞ y = if x = 0 +∞ log x
122 121 bibi2d +∞ = if x = 0 +∞ log x x = e y y = +∞ x = e y y = if x = 0 +∞ log x
123 eqeq2 log x = if x = 0 +∞ log x y = log x y = if x = 0 +∞ log x
124 123 bibi2d log x = if x = 0 +∞ log x x = e y y = log x x = e y y = if x = 0 +∞ log x
125 82 a1i y 0 +∞ ¬ y = +∞ 0
126 69 76 syl y 0 +∞ ¬ y = +∞ 0 < e y
127 125 126 ltned y 0 +∞ ¬ y = +∞ 0 e y
128 127 adantll x 0 1 y 0 +∞ ¬ y = +∞ 0 e y
129 128 neneqd x 0 1 y 0 +∞ ¬ y = +∞ ¬ 0 = e y
130 eqeq1 x = 0 x = e y 0 = e y
131 130 notbid x = 0 ¬ x = e y ¬ 0 = e y
132 129 131 syl5ibrcom x 0 1 y 0 +∞ ¬ y = +∞ x = 0 ¬ x = e y
133 132 imp x 0 1 y 0 +∞ ¬ y = +∞ x = 0 ¬ x = e y
134 simplr x 0 1 y 0 +∞ ¬ y = +∞ x = 0 ¬ y = +∞
135 133 134 2falsed x 0 1 y 0 +∞ ¬ y = +∞ x = 0 x = e y y = +∞
136 eqcom x = e y e y = x
137 136 a1i x 0 1 y 0 +∞ x = e y e y = x
138 relogeftb x + y log x = y e y = x
139 32 72 138 syl2an x 0 1 y 0 +∞ log x = y e y = x
140 33 recnd x 0 1 log x
141 71 recnd y 0 +∞ y
142 negcon2 log x y log x = y y = log x
143 140 141 142 syl2an x 0 1 y 0 +∞ log x = y y = log x
144 137 139 143 3bitr2d x 0 1 y 0 +∞ x = e y y = log x
145 23 69 144 syl2an x 0 1 ¬ x = 0 y 0 +∞ ¬ y = +∞ x = e y y = log x
146 145 an4s x 0 1 y 0 +∞ ¬ x = 0 ¬ y = +∞ x = e y y = log x
147 146 anass1rs x 0 1 y 0 +∞ ¬ y = +∞ ¬ x = 0 x = e y y = log x
148 122 124 135 147 ifbothda x 0 1 y 0 +∞ ¬ y = +∞ x = e y y = if x = 0 +∞ log x
149 96 98 120 148 ifbothda x 0 1 y 0 +∞ x = if y = +∞ 0 e y y = if x = 0 +∞ log x
150 149 adantl x 0 1 y 0 +∞ x = if y = +∞ 0 e y y = if x = 0 +∞ log x
151 1 55 94 150 f1ocnv2d F : 0 1 1-1 onto 0 +∞ F -1 = y 0 +∞ if y = +∞ 0 e y
152 151 mptru F : 0 1 1-1 onto 0 +∞ F -1 = y 0 +∞ if y = +∞ 0 e y