Metamath Proof Explorer


Theorem xrge0iifcv

Description: The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017)

Ref Expression
Hypothesis xrge0iifhmeo.1 F = x 0 1 if x = 0 +∞ log x
Assertion xrge0iifcv X 0 1 F X = log X

Proof

Step Hyp Ref Expression
1 xrge0iifhmeo.1 F = x 0 1 if x = 0 +∞ log x
2 iocssicc 0 1 0 1
3 2 sseli X 0 1 X 0 1
4 eqeq1 x = X x = 0 X = 0
5 fveq2 x = X log x = log X
6 5 negeqd x = X log x = log X
7 4 6 ifbieq2d x = X if x = 0 +∞ log x = if X = 0 +∞ log X
8 pnfex +∞ V
9 negex log X V
10 8 9 ifex if X = 0 +∞ log X V
11 7 1 10 fvmpt X 0 1 F X = if X = 0 +∞ log X
12 3 11 syl X 0 1 F X = if X = 0 +∞ log X
13 0xr 0 *
14 1re 1
15 elioc2 0 * 1 X 0 1 X 0 < X X 1
16 13 14 15 mp2an X 0 1 X 0 < X X 1
17 16 simp2bi X 0 1 0 < X
18 17 gt0ne0d X 0 1 X 0
19 18 neneqd X 0 1 ¬ X = 0
20 19 iffalsed X 0 1 if X = 0 +∞ log X = log X
21 12 20 eqtrd X 0 1 F X = log X