Metamath Proof Explorer


Theorem xrge0mulc1cn

Description: The operation multiplying a nonnegative real numbers by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Hypotheses xrge0mulc1cn.k J = ordTop 𝑡 0 +∞
xrge0mulc1cn.f F = x 0 +∞ x 𝑒 C
xrge0mulc1cn.c φ C 0 +∞
Assertion xrge0mulc1cn φ F J Cn J

Proof

Step Hyp Ref Expression
1 xrge0mulc1cn.k J = ordTop 𝑡 0 +∞
2 xrge0mulc1cn.f F = x 0 +∞ x 𝑒 C
3 xrge0mulc1cn.c φ C 0 +∞
4 letopon ordTop TopOn *
5 iccssxr 0 +∞ *
6 resttopon ordTop TopOn * 0 +∞ * ordTop 𝑡 0 +∞ TopOn 0 +∞
7 4 5 6 mp2an ordTop 𝑡 0 +∞ TopOn 0 +∞
8 1 7 eqeltri J TopOn 0 +∞
9 8 a1i C = 0 J TopOn 0 +∞
10 0e0iccpnf 0 0 +∞
11 10 a1i C = 0 0 0 +∞
12 simpl C = 0 x 0 +∞ C = 0
13 12 oveq2d C = 0 x 0 +∞ x 𝑒 C = x 𝑒 0
14 simpr C = 0 x 0 +∞ x 0 +∞
15 5 14 sselid C = 0 x 0 +∞ x *
16 xmul01 x * x 𝑒 0 = 0
17 15 16 syl C = 0 x 0 +∞ x 𝑒 0 = 0
18 13 17 eqtrd C = 0 x 0 +∞ x 𝑒 C = 0
19 18 mpteq2dva C = 0 x 0 +∞ x 𝑒 C = x 0 +∞ 0
20 fconstmpt 0 +∞ × 0 = x 0 +∞ 0
21 19 2 20 3eqtr4g C = 0 F = 0 +∞ × 0
22 c0ex 0 V
23 22 fconst2 F : 0 +∞ 0 F = 0 +∞ × 0
24 21 23 sylibr C = 0 F : 0 +∞ 0
25 cnconst J TopOn 0 +∞ J TopOn 0 +∞ 0 0 +∞ F : 0 +∞ 0 F J Cn J
26 9 9 11 24 25 syl22anc C = 0 F J Cn J
27 26 adantl φ C = 0 F J Cn J
28 eqid ordTop = ordTop
29 oveq1 x = y x 𝑒 C = y 𝑒 C
30 29 cbvmptv x * x 𝑒 C = y * y 𝑒 C
31 id C + C +
32 28 30 31 xrmulc1cn C + x * x 𝑒 C ordTop Cn ordTop
33 letopuni * = ordTop
34 33 cnrest x * x 𝑒 C ordTop Cn ordTop 0 +∞ * x * x 𝑒 C 0 +∞ ordTop 𝑡 0 +∞ Cn ordTop
35 32 5 34 sylancl C + x * x 𝑒 C 0 +∞ ordTop 𝑡 0 +∞ Cn ordTop
36 resmpt 0 +∞ * x * x 𝑒 C 0 +∞ = x 0 +∞ x 𝑒 C
37 5 36 ax-mp x * x 𝑒 C 0 +∞ = x 0 +∞ x 𝑒 C
38 37 2 eqtr4i x * x 𝑒 C 0 +∞ = F
39 1 eqcomi ordTop 𝑡 0 +∞ = J
40 39 oveq1i ordTop 𝑡 0 +∞ Cn ordTop = J Cn ordTop
41 35 38 40 3eltr3g C + F J Cn ordTop
42 4 a1i C + ordTop TopOn *
43 simpr C + x 0 +∞ x 0 +∞
44 ioorp 0 +∞ = +
45 ioossicc 0 +∞ 0 +∞
46 44 45 eqsstrri + 0 +∞
47 simpl C + x 0 +∞ C +
48 46 47 sselid C + x 0 +∞ C 0 +∞
49 ge0xmulcl x 0 +∞ C 0 +∞ x 𝑒 C 0 +∞
50 43 48 49 syl2anc C + x 0 +∞ x 𝑒 C 0 +∞
51 50 2 fmptd C + F : 0 +∞ 0 +∞
52 51 frnd C + ran F 0 +∞
53 5 a1i C + 0 +∞ *
54 cnrest2 ordTop TopOn * ran F 0 +∞ 0 +∞ * F J Cn ordTop F J Cn ordTop 𝑡 0 +∞
55 42 52 53 54 syl3anc C + F J Cn ordTop F J Cn ordTop 𝑡 0 +∞
56 41 55 mpbid C + F J Cn ordTop 𝑡 0 +∞
57 1 oveq2i J Cn J = J Cn ordTop 𝑡 0 +∞
58 56 57 eleqtrrdi C + F J Cn J
59 58 44 eleq2s C 0 +∞ F J Cn J
60 59 adantl φ C 0 +∞ F J Cn J
61 0xr 0 *
62 pnfxr +∞ *
63 0ltpnf 0 < +∞
64 elicoelioo 0 * +∞ * 0 < +∞ C 0 +∞ C = 0 C 0 +∞
65 61 62 63 64 mp3an C 0 +∞ C = 0 C 0 +∞
66 3 65 sylib φ C = 0 C 0 +∞
67 27 60 66 mpjaodan φ F J Cn J