Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0mulc1cn.k |
|
2 |
|
xrge0mulc1cn.f |
|
3 |
|
xrge0mulc1cn.c |
|
4 |
|
letopon |
|
5 |
|
iccssxr |
|
6 |
|
resttopon |
|
7 |
4 5 6
|
mp2an |
|
8 |
1 7
|
eqeltri |
|
9 |
8
|
a1i |
|
10 |
|
0e0iccpnf |
|
11 |
10
|
a1i |
|
12 |
|
simpl |
|
13 |
12
|
oveq2d |
|
14 |
|
simpr |
|
15 |
5 14
|
sselid |
|
16 |
|
xmul01 |
|
17 |
15 16
|
syl |
|
18 |
13 17
|
eqtrd |
|
19 |
18
|
mpteq2dva |
|
20 |
|
fconstmpt |
|
21 |
19 2 20
|
3eqtr4g |
|
22 |
|
c0ex |
|
23 |
22
|
fconst2 |
|
24 |
21 23
|
sylibr |
|
25 |
|
cnconst |
|
26 |
9 9 11 24 25
|
syl22anc |
|
27 |
26
|
adantl |
|
28 |
|
eqid |
|
29 |
|
oveq1 |
|
30 |
29
|
cbvmptv |
|
31 |
|
id |
|
32 |
28 30 31
|
xrmulc1cn |
|
33 |
|
letopuni |
|
34 |
33
|
cnrest |
|
35 |
32 5 34
|
sylancl |
|
36 |
|
resmpt |
|
37 |
5 36
|
ax-mp |
|
38 |
37 2
|
eqtr4i |
|
39 |
1
|
eqcomi |
|
40 |
39
|
oveq1i |
|
41 |
35 38 40
|
3eltr3g |
|
42 |
4
|
a1i |
|
43 |
|
simpr |
|
44 |
|
ioorp |
|
45 |
|
ioossicc |
|
46 |
44 45
|
eqsstrri |
|
47 |
|
simpl |
|
48 |
46 47
|
sselid |
|
49 |
|
ge0xmulcl |
|
50 |
43 48 49
|
syl2anc |
|
51 |
50 2
|
fmptd |
|
52 |
51
|
frnd |
|
53 |
5
|
a1i |
|
54 |
|
cnrest2 |
|
55 |
42 52 53 54
|
syl3anc |
|
56 |
41 55
|
mpbid |
|
57 |
1
|
oveq2i |
|
58 |
56 57
|
eleqtrrdi |
|
59 |
58 44
|
eleq2s |
|
60 |
59
|
adantl |
|
61 |
|
0xr |
|
62 |
|
pnfxr |
|
63 |
|
0ltpnf |
|
64 |
|
elicoelioo |
|
65 |
61 62 63 64
|
mp3an |
|
66 |
3 65
|
sylib |
|
67 |
27 60 66
|
mpjaodan |
|