Metamath Proof Explorer


Theorem xrge0mulgnn0

Description: The group multiple function in the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 14-Jun-2017)

Ref Expression
Assertion xrge0mulgnn0 A 0 B 0 +∞ A 𝑠 * 𝑠 0 +∞ B = A 𝑒 B

Proof

Step Hyp Ref Expression
1 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
2 iccssxr 0 +∞ *
3 xrsbas * = Base 𝑠 *
4 2 3 sseqtri 0 +∞ Base 𝑠 *
5 eqid 𝑠 * = 𝑠 *
6 eqid inv g 𝑠 * = inv g 𝑠 *
7 xrs0 0 = 0 𝑠 *
8 xrge00 0 = 0 𝑠 * 𝑠 0 +∞
9 7 8 eqtr3i 0 𝑠 * = 0 𝑠 * 𝑠 0 +∞
10 1 4 5 6 9 ressmulgnn0 A 0 B 0 +∞ A 𝑠 * 𝑠 0 +∞ B = A 𝑠 * B
11 nn0z A 0 A
12 eliccxr B 0 +∞ B *
13 xrsmulgzz A B * A 𝑠 * B = A 𝑒 B
14 11 12 13 syl2an A 0 B 0 +∞ A 𝑠 * B = A 𝑒 B
15 10 14 eqtrd A 0 B 0 +∞ A 𝑠 * 𝑠 0 +∞ B = A 𝑒 B