Metamath Proof Explorer


Theorem xrge0nemnfd

Description: A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypothesis xrge0nemnfd.1 φ A 0 +∞
Assertion xrge0nemnfd φ A −∞

Proof

Step Hyp Ref Expression
1 xrge0nemnfd.1 φ A 0 +∞
2 mnfxr −∞ *
3 2 a1i φ −∞ *
4 iccssxr 0 +∞ *
5 4 1 sselid φ A *
6 0xr 0 *
7 6 a1i φ 0 *
8 mnflt0 −∞ < 0
9 8 a1i φ −∞ < 0
10 pnfxr +∞ *
11 10 a1i φ +∞ *
12 iccgelb 0 * +∞ * A 0 +∞ 0 A
13 7 11 1 12 syl3anc φ 0 A
14 3 7 5 9 13 xrltletrd φ −∞ < A
15 3 5 14 xrgtned φ A −∞