Metamath Proof Explorer


Theorem xrge0neqmnf

Description: A nonnegative extended real is not equal to minus infinity. (Contributed by Thierry Arnoux, 9-Jun-2017) (Proof shortened by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Assertion xrge0neqmnf A 0 +∞ A −∞

Proof

Step Hyp Ref Expression
1 eliccxr A 0 +∞ A *
2 0xr 0 *
3 pnfxr +∞ *
4 iccgelb 0 * +∞ * A 0 +∞ 0 A
5 2 3 4 mp3an12 A 0 +∞ 0 A
6 ge0nemnf A * 0 A A −∞
7 1 5 6 syl2anc A 0 +∞ A −∞