Metamath Proof Explorer


Theorem xrge0subm

Description: The nonnegative extended real numbers are a submonoid of the nonnegative-infinite extended reals. (Contributed by Mario Carneiro, 21-Aug-2015)

Ref Expression
Hypothesis xrs1mnd.1 R = 𝑠 * 𝑠 * −∞
Assertion xrge0subm 0 +∞ SubMnd R

Proof

Step Hyp Ref Expression
1 xrs1mnd.1 R = 𝑠 * 𝑠 * −∞
2 simpl x * 0 x x *
3 ge0nemnf x * 0 x x −∞
4 2 3 jca x * 0 x x * x −∞
5 elxrge0 x 0 +∞ x * 0 x
6 eldifsn x * −∞ x * x −∞
7 4 5 6 3imtr4i x 0 +∞ x * −∞
8 7 ssriv 0 +∞ * −∞
9 0e0iccpnf 0 0 +∞
10 ge0xaddcl x 0 +∞ y 0 +∞ x + 𝑒 y 0 +∞
11 10 rgen2 x 0 +∞ y 0 +∞ x + 𝑒 y 0 +∞
12 1 xrs1mnd R Mnd
13 difss * −∞ *
14 xrsbas * = Base 𝑠 *
15 1 14 ressbas2 * −∞ * * −∞ = Base R
16 13 15 ax-mp * −∞ = Base R
17 1 xrs10 0 = 0 R
18 xrex * V
19 18 difexi * −∞ V
20 xrsadd + 𝑒 = + 𝑠 *
21 1 20 ressplusg * −∞ V + 𝑒 = + R
22 19 21 ax-mp + 𝑒 = + R
23 16 17 22 issubm R Mnd 0 +∞ SubMnd R 0 +∞ * −∞ 0 0 +∞ x 0 +∞ y 0 +∞ x + 𝑒 y 0 +∞
24 12 23 ax-mp 0 +∞ SubMnd R 0 +∞ * −∞ 0 0 +∞ x 0 +∞ y 0 +∞ x + 𝑒 y 0 +∞
25 8 9 11 24 mpbir3an 0 +∞ SubMnd R