Metamath Proof Explorer


Theorem xrge0tmd

Description: The extended nonnegative real numbers monoid is a topological monoid. (Contributed by Thierry Arnoux, 26-Mar-2017) (Proof Shortened by Thierry Arnoux, 21-Jun-2017.)

Ref Expression
Assertion xrge0tmd 𝑠 * 𝑠 0 +∞ TopMnd

Proof

Step Hyp Ref Expression
1 eqeq1 x = y x = 0 y = 0
2 fveq2 x = y log x = log y
3 2 negeqd x = y log x = log y
4 1 3 ifbieq2d x = y if x = 0 +∞ log x = if y = 0 +∞ log y
5 4 cbvmptv x 0 1 if x = 0 +∞ log x = y 0 1 if y = 0 +∞ log y
6 xrge0topn TopOpen 𝑠 * 𝑠 0 +∞ = ordTop 𝑡 0 +∞
7 5 6 xrge0iifmhm x 0 1 if x = 0 +∞ log x mulGrp fld 𝑠 0 1 MndHom 𝑠 * 𝑠 0 +∞
8 5 6 xrge0iifhmeo x 0 1 if x = 0 +∞ log x II Homeo TopOpen 𝑠 * 𝑠 0 +∞
9 cnfldex fld V
10 ovex 0 1 V
11 eqid fld 𝑠 0 1 = fld 𝑠 0 1
12 eqid mulGrp fld = mulGrp fld
13 11 12 mgpress fld V 0 1 V mulGrp fld 𝑠 0 1 = mulGrp fld 𝑠 0 1
14 9 10 13 mp2an mulGrp fld 𝑠 0 1 = mulGrp fld 𝑠 0 1
15 11 dfii4 II = TopOpen fld 𝑠 0 1
16 14 15 mgptopn II = TopOpen mulGrp fld 𝑠 0 1
17 16 oveq1i II Homeo TopOpen 𝑠 * 𝑠 0 +∞ = TopOpen mulGrp fld 𝑠 0 1 Homeo TopOpen 𝑠 * 𝑠 0 +∞
18 8 17 eleqtri x 0 1 if x = 0 +∞ log x TopOpen mulGrp fld 𝑠 0 1 Homeo TopOpen 𝑠 * 𝑠 0 +∞
19 eqid mulGrp fld 𝑠 0 1 = mulGrp fld 𝑠 0 1
20 19 iistmd mulGrp fld 𝑠 0 1 TopMnd
21 xrge0tps 𝑠 * 𝑠 0 +∞ TopSp
22 7 18 20 21 mhmhmeotmd 𝑠 * 𝑠 0 +∞ TopMnd