Metamath Proof Explorer


Theorem xrge0topn

Description: The topology of the extended nonnegative real numbers. (Contributed by Thierry Arnoux, 20-Jun-2017)

Ref Expression
Assertion xrge0topn TopOpen 𝑠 * 𝑠 0 +∞ = ordTop 𝑡 0 +∞

Proof

Step Hyp Ref Expression
1 eqid 𝑠 * 𝑠 0 +∞ = 𝑠 * 𝑠 0 +∞
2 xrstopn ordTop = TopOpen 𝑠 *
3 1 2 resstopn ordTop 𝑡 0 +∞ = TopOpen 𝑠 * 𝑠 0 +∞
4 3 eqcomi TopOpen 𝑠 * 𝑠 0 +∞ = ordTop 𝑡 0 +∞