Metamath Proof Explorer


Theorem xrgepnfd

Description: An extended real greater than or equal to +oo is +oo (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrgepnfd.1 φ A *
xrgepnfd.2 φ +∞ A
Assertion xrgepnfd φ A = +∞

Proof

Step Hyp Ref Expression
1 xrgepnfd.1 φ A *
2 xrgepnfd.2 φ +∞ A
3 pnfxr +∞ *
4 3 a1i φ +∞ *
5 pnfge A * A +∞
6 1 5 syl φ A +∞
7 1 4 6 2 xrletrid φ A = +∞