Metamath Proof Explorer


Theorem xrgtned

Description: 'Greater than' implies not equal. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrgtned.1 φ A *
xrgtned.2 φ B *
xrgtned.3 φ A < B
Assertion xrgtned φ B A

Proof

Step Hyp Ref Expression
1 xrgtned.1 φ A *
2 xrgtned.2 φ B *
3 xrgtned.3 φ A < B
4 xrltne A * B * A < B B A
5 1 2 3 4 syl3anc φ B A