Metamath Proof Explorer


Theorem xrinf0

Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015) (Revised by AV, 5-Sep-2020)

Ref Expression
Assertion xrinf0 sup * < = +∞

Proof

Step Hyp Ref Expression
1 xrltso < Or *
2 1 a1i < Or *
3 pnfxr +∞ *
4 3 a1i +∞ *
5 noel ¬ y
6 5 pm2.21i y ¬ y < +∞
7 6 adantl y ¬ y < +∞
8 pnfnlt y * ¬ +∞ < y
9 8 pm2.21d y * +∞ < y z z < y
10 9 imp y * +∞ < y z z < y
11 10 adantl y * +∞ < y z z < y
12 2 4 7 11 eqinfd sup * < = +∞
13 12 mptru sup * < = +∞