Metamath Proof Explorer


Theorem xrinfm

Description: The extended real numbers are unbounded below. (Contributed by Thierry Arnoux, 18-Feb-2018) (Revised by AV, 28-Sep-2020)

Ref Expression
Assertion xrinfm sup * * < = −∞

Proof

Step Hyp Ref Expression
1 ssid * *
2 mnfxr −∞ *
3 infxrmnf * * −∞ * sup * * < = −∞
4 1 2 3 mp2an sup * * < = −∞