Metamath Proof Explorer
Description: 'Less than or equal to' is reflexive for extended reals. Deduction form
of xrleid . (Contributed by Glauco Siliprandi, 26-Jun-2021)
|
|
Ref |
Expression |
|
Hypothesis |
xrleidd.1 |
|
|
Assertion |
xrleidd |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrleidd.1 |
|
| 2 |
|
xrleid |
|
| 3 |
1 2
|
syl |
|