Metamath Proof Explorer


Theorem xrleloe

Description: 'Less than or equal' expressed in terms of 'less than' or 'equals', for extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrleloe A * B * A B A < B A = B

Proof

Step Hyp Ref Expression
1 xrlenlt A * B * A B ¬ B < A
2 xrlttri B * A * B < A ¬ B = A A < B
3 2 ancoms A * B * B < A ¬ B = A A < B
4 3 con2bid A * B * B = A A < B ¬ B < A
5 eqcom B = A A = B
6 5 orbi1i B = A A < B A = B A < B
7 orcom A = B A < B A < B A = B
8 6 7 bitri B = A A < B A < B A = B
9 4 8 bitr3di A * B * ¬ B < A A < B A = B
10 1 9 bitrd A * B * A B A < B A = B