Metamath Proof Explorer


Theorem xrleltne

Description: 'Less than or equal to' implies 'less than' is not 'equals', for extended reals. (Contributed by NM, 9-Feb-2006)

Ref Expression
Assertion xrleltne A * B * A B A < B B A

Proof

Step Hyp Ref Expression
1 xrlttri3 A * B * A = B ¬ A < B ¬ B < A
2 simpl ¬ A < B ¬ B < A ¬ A < B
3 1 2 syl6bi A * B * A = B ¬ A < B
4 3 adantr A * B * A B A = B ¬ A < B
5 xrleloe A * B * A B A < B A = B
6 5 biimpa A * B * A B A < B A = B
7 6 ord A * B * A B ¬ A < B A = B
8 4 7 impbid A * B * A B A = B ¬ A < B
9 8 necon2abid A * B * A B A < B A B
10 necom B A A B
11 9 10 bitr4di A * B * A B A < B B A
12 11 3impa A * B * A B A < B B A