Metamath Proof Explorer


Theorem xrlelttr

Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrlelttr A * B * C * A B B < C A < C

Proof

Step Hyp Ref Expression
1 xrleloe A * B * A B A < B A = B
2 1 3adant3 A * B * C * A B A < B A = B
3 xrlttr A * B * C * A < B B < C A < C
4 3 expd A * B * C * A < B B < C A < C
5 breq1 A = B A < C B < C
6 5 biimprd A = B B < C A < C
7 6 a1i A * B * C * A = B B < C A < C
8 4 7 jaod A * B * C * A < B A = B B < C A < C
9 2 8 sylbid A * B * C * A B B < C A < C
10 9 impd A * B * C * A B B < C A < C