Metamath Proof Explorer
Description: 'Less than or equal to' and 'not equals' implies 'less than', for
extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)
|
|
Ref |
Expression |
|
Hypotheses |
xrleneltd.a |
|
|
|
xrleneltd.b |
|
|
|
xrleneltd.alb |
|
|
|
xrleneltd.anb |
|
|
Assertion |
xrleneltd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
xrleneltd.a |
|
2 |
|
xrleneltd.b |
|
3 |
|
xrleneltd.alb |
|
4 |
|
xrleneltd.anb |
|
5 |
4
|
necomd |
|
6 |
|
xrleltne |
|
7 |
1 2 3 6
|
syl3anc |
|
8 |
5 7
|
mpbird |
|