Metamath Proof Explorer


Theorem xrleneltd

Description: 'Less than or equal to' and 'not equals' implies 'less than', for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrleneltd.a φ A *
xrleneltd.b φ B *
xrleneltd.alb φ A B
xrleneltd.anb φ A B
Assertion xrleneltd φ A < B

Proof

Step Hyp Ref Expression
1 xrleneltd.a φ A *
2 xrleneltd.b φ B *
3 xrleneltd.alb φ A B
4 xrleneltd.anb φ A B
5 4 necomd φ B A
6 xrleltne A * B * A B A < B B A
7 1 2 3 6 syl3anc φ A < B B A
8 5 7 mpbird φ A < B