Metamath Proof Explorer


Theorem xrletr

Description: Transitive law for ordering on extended reals. (Contributed by NM, 9-Feb-2006)

Ref Expression
Assertion xrletr A * B * C * A B B C A C

Proof

Step Hyp Ref Expression
1 xrleloe B * C * B C B < C B = C
2 1 3adant1 A * B * C * B C B < C B = C
3 2 adantr A * B * C * A B B C B < C B = C
4 xrlelttr A * B * C * A B B < C A < C
5 xrltle A * C * A < C A C
6 5 3adant2 A * B * C * A < C A C
7 4 6 syld A * B * C * A B B < C A C
8 7 expdimp A * B * C * A B B < C A C
9 breq2 B = C A B A C
10 9 biimpcd A B B = C A C
11 10 adantl A * B * C * A B B = C A C
12 8 11 jaod A * B * C * A B B < C B = C A C
13 3 12 sylbid A * B * C * A B B C A C
14 13 expimpd A * B * C * A B B C A C