Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xrletr
Next ⟩
xrlttrd
Metamath Proof Explorer
Ascii
Unicode
Theorem
xrletr
Description:
Transitive law for ordering on extended reals.
(Contributed by
NM
, 9-Feb-2006)
Ref
Expression
Assertion
xrletr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
≤
B
∧
B
≤
C
→
A
≤
C
Proof
Step
Hyp
Ref
Expression
1
xrleloe
⊢
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
B
≤
C
↔
B
<
C
∨
B
=
C
2
1
3adant1
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
B
≤
C
↔
B
<
C
∨
B
=
C
3
2
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
A
≤
B
→
B
≤
C
↔
B
<
C
∨
B
=
C
4
xrlelttr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
≤
B
∧
B
<
C
→
A
<
C
5
xrltle
⊢
A
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
<
C
→
A
≤
C
6
5
3adant2
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
<
C
→
A
≤
C
7
4
6
syld
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
≤
B
∧
B
<
C
→
A
≤
C
8
7
expdimp
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
A
≤
B
→
B
<
C
→
A
≤
C
9
breq2
⊢
B
=
C
→
A
≤
B
↔
A
≤
C
10
9
biimpcd
⊢
A
≤
B
→
B
=
C
→
A
≤
C
11
10
adantl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
A
≤
B
→
B
=
C
→
A
≤
C
12
8
11
jaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
A
≤
B
→
B
<
C
∨
B
=
C
→
A
≤
C
13
3
12
sylbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
A
≤
B
→
B
≤
C
→
A
≤
C
14
13
expimpd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
≤
B
∧
B
≤
C
→
A
≤
C