Metamath Proof Explorer
		
		
		
		Description:  Transitive law for ordering on extended reals.  (Contributed by Mario
         Carneiro, 23-Aug-2015)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | xrlttrd.1 |  | 
					
						|  |  | xrlttrd.2 |  | 
					
						|  |  | xrlttrd.3 |  | 
					
						|  |  | xrletrd.4 |  | 
					
						|  |  | xrletrd.5 |  | 
				
					|  | Assertion | xrletrd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | xrlttrd.1 |  | 
						
							| 2 |  | xrlttrd.2 |  | 
						
							| 3 |  | xrlttrd.3 |  | 
						
							| 4 |  | xrletrd.4 |  | 
						
							| 5 |  | xrletrd.5 |  | 
						
							| 6 |  | xrletr |  | 
						
							| 7 | 1 2 3 6 | syl3anc |  | 
						
							| 8 | 4 5 7 | mp2and |  |