Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xrletri3
Next ⟩
xrletrid
Metamath Proof Explorer
Ascii
Unicode
Theorem
xrletri3
Description:
Trichotomy law for extended reals.
(Contributed by
FL
, 2-Aug-2009)
Ref
Expression
Assertion
xrletri3
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
=
B
↔
A
≤
B
∧
B
≤
A
Proof
Step
Hyp
Ref
Expression
1
xrlttri3
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
=
B
↔
¬
A
<
B
∧
¬
B
<
A
2
1
biancomd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
=
B
↔
¬
B
<
A
∧
¬
A
<
B
3
xrlenlt
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≤
B
↔
¬
B
<
A
4
xrlenlt
⊢
B
∈
ℝ
*
∧
A
∈
ℝ
*
→
B
≤
A
↔
¬
A
<
B
5
4
ancoms
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
B
≤
A
↔
¬
A
<
B
6
3
5
anbi12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
≤
B
∧
B
≤
A
↔
¬
B
<
A
∧
¬
A
<
B
7
2
6
bitr4d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
=
B
↔
A
≤
B
∧
B
≤
A