Metamath Proof Explorer


Theorem xrletri3

Description: Trichotomy law for extended reals. (Contributed by FL, 2-Aug-2009)

Ref Expression
Assertion xrletri3 A * B * A = B A B B A

Proof

Step Hyp Ref Expression
1 xrlttri3 A * B * A = B ¬ A < B ¬ B < A
2 1 biancomd A * B * A = B ¬ B < A ¬ A < B
3 xrlenlt A * B * A B ¬ B < A
4 xrlenlt B * A * B A ¬ A < B
5 4 ancoms A * B * B A ¬ A < B
6 3 5 anbi12d A * B * A B B A ¬ B < A ¬ A < B
7 2 6 bitr4d A * B * A = B A B B A