Metamath Proof Explorer


Theorem xrletrid

Description: Trichotomy law for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses xrletrid.1 φ A *
xrletrid.2 φ B *
xrletrid.3 φ A B
xrletrid.4 φ B A
Assertion xrletrid φ A = B

Proof

Step Hyp Ref Expression
1 xrletrid.1 φ A *
2 xrletrid.2 φ B *
3 xrletrid.3 φ A B
4 xrletrid.4 φ B A
5 xrletri3 A * B * A = B A B B A
6 1 2 5 syl2anc φ A = B A B B A
7 3 4 6 mpbir2and φ A = B