Step |
Hyp |
Ref |
Expression |
1 |
|
xrlexaddrp.1 |
|
2 |
|
xrlexaddrp.2 |
|
3 |
|
xrlexaddrp.3 |
|
4 |
|
pnfge |
|
5 |
1 4
|
syl |
|
6 |
5
|
adantr |
|
7 |
|
id |
|
8 |
7
|
eqcomd |
|
9 |
8
|
adantl |
|
10 |
6 9
|
breqtrd |
|
11 |
|
simpl |
|
12 |
|
neqne |
|
13 |
12
|
adantl |
|
14 |
|
simpr |
|
15 |
|
mnfle |
|
16 |
2 15
|
syl |
|
17 |
16
|
adantr |
|
18 |
14 17
|
eqbrtrd |
|
19 |
18
|
adantlr |
|
20 |
|
simpl |
|
21 |
|
neqne |
|
22 |
21
|
adantl |
|
23 |
|
simpll |
|
24 |
2
|
adantr |
|
25 |
|
simpr |
|
26 |
24 25
|
jca |
|
27 |
|
xrnepnf |
|
28 |
26 27
|
sylib |
|
29 |
28
|
adantr |
|
30 |
|
simpr |
|
31 |
|
pm2.53 |
|
32 |
29 30 31
|
sylc |
|
33 |
32
|
adantlr |
|
34 |
|
id |
|
35 |
|
1rp |
|
36 |
35
|
a1i |
|
37 |
|
1re |
|
38 |
37
|
elexi |
|
39 |
|
eleq1 |
|
40 |
39
|
anbi2d |
|
41 |
|
oveq2 |
|
42 |
41
|
breq2d |
|
43 |
40 42
|
imbi12d |
|
44 |
38 43 3
|
vtocl |
|
45 |
34 36 44
|
syl2anc |
|
46 |
45
|
ad2antrr |
|
47 |
|
oveq1 |
|
48 |
|
1xr |
|
49 |
|
ltpnf |
|
50 |
37 49
|
ax-mp |
|
51 |
37 50
|
ltneii |
|
52 |
|
xaddmnf2 |
|
53 |
48 51 52
|
mp2an |
|
54 |
53
|
a1i |
|
55 |
47 54
|
eqtr2d |
|
56 |
55
|
adantl |
|
57 |
56
|
eqcomd |
|
58 |
1
|
adantr |
|
59 |
|
simpr |
|
60 |
|
nemnftgtmnft |
|
61 |
58 59 60
|
syl2anc |
|
62 |
61
|
adantr |
|
63 |
57 62
|
eqbrtrd |
|
64 |
2
|
ad2antrr |
|
65 |
48
|
a1i |
|
66 |
64 65
|
xaddcld |
|
67 |
1
|
ad2antrr |
|
68 |
|
xrltnle |
|
69 |
66 67 68
|
syl2anc |
|
70 |
63 69
|
mpbid |
|
71 |
46 70
|
pm2.65da |
|
72 |
71
|
neqned |
|
73 |
72
|
ad4ant13 |
|
74 |
73
|
neneqd |
|
75 |
33 74
|
condan |
|
76 |
3
|
adantlr |
|
77 |
|
simpl |
|
78 |
|
rpre |
|
79 |
78
|
adantl |
|
80 |
|
rexadd |
|
81 |
77 79 80
|
syl2anc |
|
82 |
81
|
adantll |
|
83 |
76 82
|
breqtrd |
|
84 |
83
|
ralrimiva |
|
85 |
1
|
adantr |
|
86 |
|
simpr |
|
87 |
|
xralrple |
|
88 |
85 86 87
|
syl2anc |
|
89 |
84 88
|
mpbird |
|
90 |
23 75 89
|
syl2anc |
|
91 |
20 22 90
|
syl2anc |
|
92 |
19 91
|
pm2.61dan |
|
93 |
11 13 92
|
syl2anc |
|
94 |
10 93
|
pm2.61dan |
|