Metamath Proof Explorer


Theorem xrltle

Description: 'Less than' implies 'less than or equal' for extended reals. (Contributed by NM, 19-Jan-2006)

Ref Expression
Assertion xrltle A * B * A < B A B

Proof

Step Hyp Ref Expression
1 orc A < B A < B A = B
2 xrleloe A * B * A B A < B A = B
3 1 2 syl5ibr A * B * A < B A B